Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Schröder, M. Mannattil, D. Dutta, S. Chakraborty, and M. Timme, “ Transient uncoupling induces synchronization,” Phys. Rev. Lett. 115, 054101 (2015).
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “ Novel type of phase transition in a system of self-driven particles,” Phys. Rev. Lett. 75, 1226 (1995).
B. Blasius, A. Huppert, and L. Stone, “ Complex dynamics and phase synchronization in spatially extended ecological systems,” Nature 399, 354 (1999).
L. Stone, R. Olinky, B. Blasius, A. Huppert, and B. Cazelles, “ Complex synchronization phenomena in ecological systems,” AIP Conf. Proc. 622, 476 (2002).
M. Aguiar, P. Ashwin, A. Dias, and M. Field, “ Dynamics of coupled cell networks: Synchrony, heteroclinic cycles and inflation,” J. Nonlinear Sci. 21, 271 (2011).
M. Timme, “ Does dynamics reflect topology in directed networks?,” EPL 76, 367 (2006).
S. Steingrube, M. Timme, F. Wörgöter, and P. Manoonpong, “ Self-organized adaptation of a simple neural circuit enables complex robot behaviour,” Nat. Phys. 6, 224 (2010).
H.-A. Tanaka, “ Synchronization limit of weakly forced nonlinear oscillators,” J. Phys. A 47, 402002 (2014).
M. H. Matheny, M. Grau, L. G. Villanueva, R. B. Karabalin, M. C. Cross, and M. L. Roukes, “ Phase synchronization of two anharmonic nanomechanical oscillators,” Phys. Rev. Lett. 112, 014101 (2014).
S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, and E. Ott, “ Theoretical mechanics: Crowd synchrony on the Millennium bridge,” Nature 438, 43 (2005).
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization ( Cambridge University Press, New York, 2001).
A. Balanov, N. Janson, D. Postnov, and O. Sosnovtseva, Synchronization ( Springer, Berlin, 2010).
T. Yamada and H. Fujisaka, “ Stability theory of synchronized motion in coupled-oscillator systems. ii: The mapping approach,” Prog. Theor. Phys. 70, 1240 (1983).
L. M. Pecora and T. L. Carroll, “ Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821 (1990).
M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “ Phase synchronization of chaotic oscillators,” Phys. Rev. Lett. 76, 1804 (1996).
E. Rosa, E. Ott, and M. H. Hess, “ Transition to phase synchronization of chaos,” Phys. Rev. Lett. 80, 1642 (1998).
E. M. Izhikevich, “ Neural excitability, spiking and bursting,” Int. J. Bifurcation Chaos 10, 1171 (2000).
M. Dhamala, V. K. Jirsa, and M. Ding, “ Transitions to synchrony in coupled bursting neurons,” Phys. Rev. Lett. 92, 028101 (2004).
M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “ From phase to lag synchronization in coupled chaotic oscillators,” Phys. Rev. Lett. 78, 4193 (1997).
S. Boccaletti and D. L. Valladares, “ Characterization of intermittent lag synchronization,” Phys. Rev. E 62, 7497 (2000).
N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “ Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E 51, 980 (1995).
L. Kocarev and U. Parlitz, “ Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems,” Phys. Rev. Lett. 76, 1816 (1996).
B. R. Hunt, E. Ott, and J. A. Yorke, “ Differentiable generalized synchronization of chaos,” Phys. Rev. E 55, 4029 (1997).
K. Pyragas, “ Weak and strong synchronization of chaos,” Phys. Rev. E 54, R4508 (1996).
R. Brown and L. Kocarev, “ A unifying definition of synchronization for dynamical systems,” Chaos 10, 344 (2000).
L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar, and J. F. Heagy, “ Fundamentals of synchronization in chaotic systems, concepts, and applications,” Chaos 7, 520 (1997).
H. Herzel and J. Freund, “ Chaos, noise, and synchronization reconsidered,” Phys. Rev. E 52, 3238 (1995).
C.-H. Lai and C. Zhou, “ Synchronization of chaotic maps by symmetric common noise,” Europhys. Lett. 43, 376 (1998).
R. Toral, C. R. Mirasso, E. Hernández-Garcia, and O. Piro, “ Analytical and numerical studies of noise-induced synchronization of chaotic systems,” Chaos 11, 665 (2001).
Y. Wang, D. T. W. Chik, and Z. D. Wang, “ Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons,” Phys. Rev. E 61, 740 (2000).
C. Zhou, J. Kurths, I. Z. Kiss, and J. L. Hudson, “ Noise-enhanced phase synchronization of chaotic oscillators,” Phys. Rev. Lett. 89, 014101 (2002).
C. Zhou and J. Kurths, “ Noise-induced phase synchronization and synchronization transitions in chaotic oscillators,” Phys. Rev. Lett. 88, 230602 (2002).
S. De Monte, F. d'Ovidio, H. Chaté, and E. Mosekilde, “ Noise-induced macroscopic bifurcations in globally coupled chaotic units,” Phys. Rev. Lett. 92, 254101 (2004).
A. A. Koronovskii, O. I. Moskalenko, D. I. Trubetskov, and A. E. Khramov, “ Generalized synchronization and noise-induced synchronization: The same type of behavior of coupled chaotic systems,” Dokl. Phys. 51, 189 (2006).
A. E. Hramov, A. A. Koronovskii, and O. I. Moskalenko, “ Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators?,” Phys. Lett. A 354, 423 (2006).
S. Guan, Y.-C. Lai, and C.-H. Lai, “ Effect of noise on generalized chaotic synchronization,” Phys. Rev. E 73, 046210 (2006).
Z. F. Mainen and T. J. Sejnowski, “ Reliability of spike timing in neocortical neurons,” Science 268, 1503 (1995).
D. He, L. Stone, and B. Cazelles, “ Noise-induced synchronization in multitrophic chaotic ecological systems,” Int. J. Bifurcation Chaos 20, 1779 (2010).
O. I. Moskalenko, A. A. Koronovskii, A. E. Hramov, and S. Boccaletti, “ Generalized synchronization in mutually coupled oscillators and complex networks,” Phys. Rev. E 86, 036216 (2012).
H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “ Generalized synchronization of chaos: The auxiliary system approach,” Phys. Rev. E 53, 4528 (1996).
E. N. Lorenz, “ Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130 (1963).<0130:DNF>2.0.CO;2
R. Mainieri and J. Rehacek, “ Projective synchronization in three-dimensional chaotic systems,” Phys. Rev. Lett. 82, 3042 (1999).
O. E. Rössler, “ An equation for continuous chaos,” Phys. Lett. A 57, 397 (1976).
H. D. I. Abarbanel, R. Brown, and M. B. Kennel, “ Variation of Lyapunov exponents on a strange attractor,” J. Nonlinear Sci. 1, 175 (1991).
B. Eckhardt and D. Yao, “ Local Lyapunov exponents in chaotic systems,” Physica D 65, 100 (1993).
R. Doerner, B. Hübinger, W. Martienssen, S. Grossmann, and S. Thomae, “ Predictability portraits for chaotic motions,” Chaos Soliton Fractals 1, 553 (1991).
G. A. Johnson, D. J. Mar, T. L. Carroll, and L. M. Pecora, “ Synchronization and imposed bifurcations in the presence of large parameter mismatch,” Phys. Rev. Lett. 80, 3956 (1998).
S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, “ The synchronization of chaotic systems,” Phys. Rep. 366, 1 (2002).
H. S. Samanta, J. K. Bhattacharjee, A. Bhattacharyay, and S. Chakraborty, “ On noise induced Poincaré–Andronov–Hopf bifurcation,” Chaos 24, 043122 (2014).
K. M. Cuomo and A. V. Oppenheim, “ Circuit implementation of synchronized chaos with applications to communications,” Phys. Rev. Lett. 71, 65 (1993).
L. Kocarev and U. Parlitz, “ General approach for chaotic synchronization with applications to communication,” Phys. Rev. Lett. 74, 5028 (1995).
R. E. Amritkar and N. Gupte, “ Synchronization of chaotic orbits: The effect of a finite time step,” Phys. Rev. E 47, 3889 (1993).
L. Junge and U. Parlitz, “ Synchronization using dynamic coupling,” Phys. Rev. E 64, 055204 (2001).
L. Chen, C. Qiu, and H. B. Huang, “ Synchronization with on-off coupling: Role of time scales in network dynamics,” Phys. Rev. E 79, 045101 (2009).
O. V. Popovych, P. A. Tass, and C. Hauptmann, “ Desynchronization (computational neuroscience),” Scholarpedia 6, 1352 (2011).

Data & Media loading...


Article metrics loading...



Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd