Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
E. Davidson and M. Levin, “ Gene regulatory networks,” Proc. Natl. Acad. Sci. U.S.A. 102(14), 49354935 (2005).
C. M. Gray, A. K. Engel, P. König, and W. Singer, “ Synchronization of oscillatory neuronal responses in cat striate cortex: Temporal properties,” Visual Neurosci. 8(04), 337347 (1992).
S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly, “ Identifying, understanding, and analyzing critical infrastructure interdependencies,” IEEE Control Syst. 21(6), 1125 (2001).
V. Rosato, L. Issacharoff, F. Tiriticco, S. Meloni, S. Porcellinis, and R. Setola, “ Modelling interdependent infrastructures using interacting dynamical models,” Int. J. Crit. Infrastruct. 4(1–2), 6379 (2008).
A. D. González, L. Dueñas-Osorio, M. Sánchez-Silva, and A. L. Medaglia, “ The interdependent network design problem for optimal infrastructure system restoration,” Comput.-Aided Civil Infrastruct. Eng. 31(5), 334350 (2016).
H. Poincaré, Les nouvelles méthodes de la mécanique céleste ( Gauthier-Villars, Paris, 1892).
J. Milnor, “ On the concept of attractor,” in The Theory of Chaotic Attractors ( Springer, 1985), pp. 243264.
S. Smale, The Mathematics of Time ( Springer, 1980).
C. Conley, “ The gradient structure of a flow: I,” Ergodic Theory Dyn. Syst. 8(8*), 1126 (1988).
C. Conley, Isolated Invariant Sets and the Morse Index ( American Mathematical Society, 1978), Vol. 38.
D. E. Norton, “ The fundamental theorem of dynamical systems,” Commentat. Math. Univ. Carol. 36(3), 585598 (1995); available at
J. Hasty, J. Pradines, M. Dolnik, and J. J. Collins, “ Noise-based switches and amplifiers for gene expression,” Proc. Natl. Acad. Sci. U.S.A. 97(5), 20752080 (2000).
M. Timme, F. Wolf, and T. Geisel, “ Prevalence of unstable attractors in networks of pulse-coupled oscillators,” Phys. Rev. Lett. 89(15), 154105 (2002).
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences ( Cambridge University Press, 2003), Vol. 12.
F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural Networks ( Springer, Berlin, 1997).
A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, “ Spontaneous synchrony in power-grid networks,” Nat. Phys. 9(3), 191197 (2013).
Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, and A.-L. Barabási, “ Self-organizing processes: The sound of many hands clapping,” Nature 403(6772), 849850 (2000).
R. E. Mirollo and S. H. Strogatz, “ Synchronization of pulse-coupled biological oscillators,” SIAM J. Appl. Math. 50(6), 16451662 (1990).
P. C. Matthews, R. E. Mirollo, and S. H. Strogatz, “ Dynamics of a large system of coupled nonlinear oscillators,” Phys. D 52(2), 293331 (1991).
D. M. Abrams and S. H. Strogatz, “ Chimera states for coupled oscillators,” Phys. Rev. Lett. 93(17), 174102 (2004).
A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, “ Experimental observation of chimeras in coupled-map lattices,” Nat. Phys. 8(9), 658661 (2012).
A. Arenas, A. Díaz-Guilera, and C. J. Pérez-Vicente, “ Synchronization reveals topological scales in complex networks,” Phys. Rev. Lett. 96(11), 114102 (2006).
K. Wang, X. Fu, and K. Li, “ Cluster synchronization in community networks with nonidentical nodes,” Chaos 19(2), 023106 (2009).
G. B. Ermentrout, “ The behavior of rings of coupled oscillators,” J. Math. Biol. 23(1), 5574 (1985).
P. C. Bressloff, S. Coombes, and B. De Souza, “ Dynamics of a ring of pulse-coupled oscillators: Group-theoretic approach,” Phys. Rev. Lett. 79(15), 2791 (1997).
J. A. Rogge and D. Aeyels, “ Stability of phase locking in a ring of unidirectionally coupled oscillators,” J. Phys. A: Math. Gen. 37(46), 11135 (2004).
D. A. Wiley, S. H. Strogatz, and M. Girvan, “ The size of the sync basin,” Chaos 16(1), 015103 (2006).
C.-U. Choe, T. Dahms, P. Hövel, and E. Schöll, “ Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states,” Phys. Rev. E 81(2), 025205 (2010).
S.-Y. Ha and M.-J. Kang, “ On the basin of attractors for the unidirectionally coupled Kuramoto model in a ring,” SIAM J. Appl. Math. 72(5), 15491574 (2012).
A. V. Shabunin, “ Phase multistability in a dynamical small world network,” Chaos 25(1), 013109 (2015).
R. Lifshitz and M. C. Cross, “ Nonlinear dynamics of nanomechanical and micromechanical resonators,” Rev. Nonlinear Dyn. Complexity 1, 152 (2008).
M. C. Cross, A. Zumdieck, R. Lifshitz, and J. L. Rogers, “ Synchronization by nonlinear frequency pulling,” Phys. Rev. Lett. 93(22), 224101 (2004).
M. H. Matheny, M. Grau, L. G. Villanueva, R. B. Karabalin, M. C. Cross, and M. L. Roukes, “ Phase synchronization of two anharmonic nanomechanical oscillators,” Phys. Rev. Lett. 112(1), 014101 (2014).
W. Fon, M. Matheny, J. Li, R. M. D'Souza, J. P. Crutchfield, and M. L. Roukes, “ Modular nonlinear nanoelectromechanical oscillators for synchronized networks,” (unpublished).
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence ( Dover Publications, Mineola, Minnesota, 1984).
I. S. Aranson and L. Kramer, “ The world of the complex Ginzburg-Landau equation,” Rev. Mod. Phys. 74(1), 99 (2002).
S. P. Cornelius, W. L. Kath, and A. E. Motter, “ Realistic control of network dynamics,” Nat. Commun. 4, 1942 (2013).
A. N. Pisarchik and U. Feudel, “ Control of multistability,” Phys. Rep. 540(4), 167218 (2014).
D. K. Wells, W. L. Kath, and A. E. Motter, “ Control of stochastic and induced switching in biophysical networks,” Phys. Rev. X 5(3), 031036 (2015).
H. K. Khalil, Nonlinear Systems ( Prentice Hall, Upper Saddle River, 1996).
R. Diestel, Graph Theory ( Springer, Berlin, 2000).
R. A. Horn and C. R. Johnson, Matrix Analysis ( Cambridge University Press, New York, 1990).
S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design ( Wiley, West Sussex, 2005).

Data & Media loading...


Article metrics loading...



Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cycles at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd