Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. H. Strogatz, “ From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators,” Physica D 143, 120 (2000).
S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, “ The synchronization of chaotic systems,” Phys. Rep. 366, 1101 (2002).
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “ Synchronization in complex networks,” Phys. Rep. 469, 93153 (2008).
F. Dörfler and F. Bullo, “ Synchronization in complex networks of phase oscillators: A survey,” Automatica 50, 15391564 (2014).
T. Nishikawa and A. E. Motter, “ Comparative analysis of existing models for power-grid synchronization,” New J. Phys. 17, 015012 (2015).
M. J. Panaggio and D. M. Abrams, “ Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators,” Nonlinearity 28, R67 (2015).
F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths, “ The Kuramoto model in complex networks,” Phys. Rep. 610, 198 (2016).
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence ( Springer Science & Business Media, 2012), Vol. 19.
A. Jadbabaie, J. Lin, and A. S. Morse, “ Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Trans. Autom. Control 48, 9881001 (2003).
J. Heagy, T. Carroll, and L. Pecora, “ Synchronous chaos in coupled oscillator systems,” Phys. Rev. E 50, 1874 (1994).
L. M. Pecora and T. L. Carroll, “ Master stability functions for synchronized coupled systems,” Phys. Rev. Lett. 80, 2109 (1998).
M. Barahona and L. M. Pecora, “ Synchronization in small-world systems,” Phys. Rev. Lett. 89, 054101 (2002).
L. M. Pecora and M. Barahona, “ Synchronization of oscillators in complex networks,” Chaos Complexity Lett. 1, 6191 (2005).
A. Jadbabaie, N. Motee, and M. Barahona, “ On the stability of the Kuramoto model of coupled nonlinear oscillators,” in Proceedings of the American Control Conference (2004), Vol. 5, pp. 42964301.
K. Judd, “ Networked dynamical systems with linear coupling: synchronisation patterns, coherence and other behaviours,” Chaos 23, 043112 (2013).
O. D'Huys, R. Vicente, T. Erneux, J. Danckaert, and I. Fischer, “ Synchronization properties of network motifs: Influence of coupling delay and symmetry,” Chaos 18, 037116 (2008).
W. Lu, B. Liu, and T. Chen, “ Cluster synchronization in networks of coupled nonidentical dynamical systems,” Chaos 20, 013120 (2010).
T. Dahms, J. Lehnert, and E. Schöll, “ Cluster and group synchronization in delay-coupled networks,” Phys. Rev. E 86, 016202 (2012).
A.-L. Do, J. Höfener, and T. Gross, “ Engineering mesoscale structures with distinct dynamical implications,” New J. Phys. 14, 115022 (2012).
C. Fu, Z. Deng, L. Huang, and X. Wang, “ Topological control of synchronous patterns in systems of networked chaotic oscillators,” Phys. Rev. E 87, 032909 (2013).
D. P. Rosin, D. Rontani, D. J. Gauthier, and E. Schöll, “ Control of synchronization patterns in neural-like Boolean networks,” Phys. Rev. Lett. 110, 104102 (2013).
F. Sorrentino and E. Ott, “ Network synchronization of groups,” Phys. Rev. E 76, 056114 (2007).
C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, “ Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators,” Phys. Rev. Lett. 110, 064104 (2013).
L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, “ Cluster synchronization and isolated desynchronization in complex networks with symmetries,” Nat. Commun. 5, 4079 (2014).
F. Sorrentino et al., “ Complete characterization of the stability of cluster synchronization in complex dynamical networks,” Sci. Advances 2(4), e1501737 (2016).
M. Egerstedt, S. Martini, M. Cao, K. Camlibel, and A. Bicchi, “ Interacting with networks: How does structure relate to controllability in single-leader, consensus networks?,” IEEE Control Syst. 32, 6673 (2012).
N. O'Clery, Y. Yuan, G.-B. Stan, and M. Barahona, “ Observability and coarse graining of consensus dynamics through the external equitable partition,” Phys. Rev. E 88, 042805 (2013).
D. M. Cardoso, C. Delorme, and P. Rama, “ Laplacian eigenvectors and eigenvalues and almost equitable partitions,” Eur. J. Combinatorics 28, 665673 (2007).
S. Martini, M. Egerstedt, and A. Bicchi, “ Controllability analysis of multi-agent systems using relaxed equitable partitions,” Int. J. Syst., Control Commun. 2, 100121 (2010).
Y. Kuramoto, “ Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics ( Springer, 1975), pp. 420422.
F. Heider, “ Attitudes and cognitive organization,” J. Psychol. 21, 107112 (1946).
D. Cartwright and F. Harary, “ Structural balance: a generalization of Heider's theory,” Psychol. Rev. 63, 277 (1956).
C. Altafini, “ Consensus problems on networks with antagonistic interactions,” IEEE Trans. Autom. Control 58, 935946 (2013).
C. Altafini, “ Stability analysis of diagonally equipotent matrices,” Automatica 49, 27802785 (2013).
A. Chan and C. D. Godsil, “ Symmetry and eigenvectors,” in Graph Symmetry ( Springer, 1997), pp. 75106.
S. Kudose, “ Equitable partitions and orbit partitions,” (unpublished); available at
O. E. Rössler, “ An equation for continuous chaos,” Phys. Lett. A 57, 397398 (1976).
F. Dörfler and F. Bullo, “ Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators,” SIAM J. Control Optim. 50, 16161642 (2012).
V. Nicosia, M. Valencia, M. Chavez, A. Díaz-Guilera, and V. Latora, “ Remote synchronization reveals network symmetries and functional modules,” Phys. Rev. Lett. 110, 174102 (2013).
J. Leskovec, D. Huttenlocher, and J. Kleinberg, “ Signed networks in social media,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2010), pp. 13611370.
M. Szell, R. Lambiotte, and S. Thurner, “ Multirelational organization of large-scale social networks in an online world,” Proc. Natl. Acad. Sci. 107, 1363613641 (2010).
E. Davidson and M. Levin, “ Gene regulatory networks,” Proc. Natl. Acad. Sci. 102, 49354935 (2005).
W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition ( Cambridge University Press, 2014).
M. T. Schaub, Y. N. Billeh, C. A. Anastassiou, C. Koch, and M. Barahona, “ Emergence of slow-switching assemblies in structured neuronal networks,” PLoS Comput. Biol. 11, e1004196 (2015).
J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. De Luca, and S. Albayrak, “ Spectral analysis of signed graphs for clustering, prediction and visualization,” in SDM ( SIAM, 2010), Vol. 10, p. 559.
G. Facchetti, G. Iacono, and C. Altafini, “ Computing global structural balance in large-scale signed social networks,” Proc. Natl. Acad. Sci. 108, 2095320958 (2011).
S. A. Marvel, J. Kleinberg, R. D. Kleinberg, and S. H. Strogatz, “ Continuous-time model of structural balance,” Proc. Natl. Acad. Sci. 108, 17711776 (2011).
V. A. Traag, P. Van Dooren, and P. De Leenheer, “ Dynamical models explaining social balance and evolution of cooperation,” PLoS One 8, e60063 (2013).
A. El-Ati and E. Panteley, “ Phase locked synchronization for Kuramoto model, with attractive and repulsive interconnections,” in 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, 2013), pp. 12531258.
M. Barahona, E. Trias, T. P. Orlando, A. E. Duwel, H. S. van der Zant, S. Watanabe, and S. H. Strogatz, “ Resonances of dynamical checkerboard states in Josephson arrays with self-inductance,” Phys. Rev. B 55, 1198911992 (1997).
P. T. Darga, K. A. Sakallah, and L. I. Markov, “ Faster symmetry discovery using sparsity of symmetries,” in Proceedings of the 45th Annual Design Automation Conference (ACM, 2008), pp. 149154.
T. G. Group, See for “GAP: Groups, algorithms, and programming.”
H. Kamei and P. J. Cock, “ Computation of balanced equivalence relations and their lattice for a coupled Cell network,” SIAM J. Appl. Dyn. Syst. 12, 352382 (2013).
M. Cao, S. Zhang, and M. K. Camlibel, “ A class of uncontrollable diffusively coupled multiagent systems with multichain topologies,” IEEE Trans. Autom. Control 58, 465469 (2013).
L. Moreau, “ Stability of continuous-time distributed consensus algorithms,” in 43rd IEEE Conference on Decision and Control (CDC) 2004 (IEEE, 2004), Vol. 4, pp. 39984003.
R. Sepulchre, “ Consensus on nonlinear spaces,” Annu. Rev. Control 35, 5664 (2011).
G. Russo and J.-J. E. Slotine, “ Symmetries, stability, and control in nonlinear systems and networks,” Phys. Rev. E 84, 041929 (2011).
A. Mauroy and R. Sepulchre, “ Contraction of monotone phase-coupled oscillators,” Syst. Control Lett. 61, 10971102 (2012).
D. M. Abrams and S. H. Strogatz, “ Chimera states for coupled oscillators,” Phys. Rev. Lett. 93, 174102 (2004).
P. Doreian and A. Mrvar, “ A partitioning approach to structural balance,” Social Networks 18, 149168 (1996).
J. Hendrickx, “ A lifting approach to models of opinion dynamics with antagonisms,” in 2014 IEEE 53rd Annual Conference on Decision and Control (CDC) (2014), pp. 21182123.
L. Scardovi and R. Sepulchre, “ Synchronization in networks of identical linear systems,” Automatica 45, 25572562 (2009).
D. A. Paley, N. E. Leonard, R. Sepulchre, D. Grünbaum, and J. K. Parrish, “ Oscillator models and collective motion,” IEEE Control Syst. 27, 89105 (2007).
A. Papachristodoulou, A. Jadbabaie, and U. Munz, “ Effects of delay in multi-agent consensus and oscillator synchronization,” IEEE Trans. Autom. Control 55, 14711477 (2010).

Data & Media loading...


Article metrics loading...



Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd