Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/9/10.1063/1.4961967
1.
L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, “ Cluster synchronization and isolated desynchronization in complex networks with symmetries,” Nat. Commun. 5, 4079 (2014).
http://dx.doi.org/10.1038/ncomms5079
2.
F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, and R. Roy, “ Complete characterization of stability of cluster synchronization in complex dynamical networks,” Sci. Adv. 2, e1501737 (2016).
http://dx.doi.org/10.1126/sciadv.1501737
3.
J. G. Restrepo, E. Ott, and B. R. Hunt, “ Spatial patterns of desynchronization bursts in networks,” Phys. Rev. E 69, 066215 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.066215
4.
J. Sun, E. M. Bollt, and T. Nishikawa, “ Master stability functions for coupled nearly identical dynamical systems,” Europhys. Lett. 85, 60011 (2009).
http://dx.doi.org/10.1209/0295-5075/85/60011
5.
F. Sorrentino and M. Porfiri, “ Sensitivity analysis of the master stability function approach for network synchronization,” Europhys. Lett. 93, 50002 (2011).
http://dx.doi.org/10.1209/0295-5075/93/50002
6.
S. Acharyya and R. Amritkar, “ Synchronization of coupled nonidentical dynamical systems,” EPL (Europhys. Lett.) 99, 40005 (2012).
http://dx.doi.org/10.1209/0295-5075/99/40005
7.
S. Acharyya and R. Amritkar, “ Synchronization of nearly identical dynamical systems: Size instability,” Phys. Rev. E 92, 052902 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.052902
8.
P. Ashwin, J. Buescu, and I. N. Stewart, “ Bubbling of attractors and synchronization of chaotic oscillators,” Phys. Lett. A 193, 126 (1994).
http://dx.doi.org/10.1016/0375-9601(94)90947-4
9.
P. Ashwin, J. Buescu, and I. N. Stewart, “ From attractor to chaotic saddle: A tale of transversal stability,” Nonlinearity 9, 703 (1996).
http://dx.doi.org/10.1088/0951-7715/9/3/006
10.
T. G. Group, http://www.gap-system.org for GAP: Groups, Algorithms, and Programming, Version 4.4, 2005.
11.
W. Stein, http://www.sagemath.org/sage/ and http://sage.scipy.org/ for SAGE: Software for Algebra and Geometry Experimentation, 2013.
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/9/10.1063/1.4961967
Loading
/content/aip/journal/chaos/26/9/10.1063/1.4961967
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/9/10.1063/1.4961967
2016-09-06
2016-09-29

Abstract

We study cluster synchronization in networks with symmetries in the presence of small generic parametric mismatches of two different types: mismatches affecting the dynamics of the individual uncoupled systems and mismatches affecting the network couplings. We perform a stability analysis of the nearly synchronous cluster synchronization solution and reduce the stability problem to a low-dimensional form. We also show how under certain conditions the low dimensional analysis can be used to predict the overall synchronization error, i.e., how close the individual nearly synchronous trajectories are to each other.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/9/1.4961967.html;jsessionid=FcpRV86D6d5w0eabM3VuVl1h.x-aip-live-03?itemId=/content/aip/journal/chaos/26/9/10.1063/1.4961967&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/9/10.1063/1.4961967&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/9/10.1063/1.4961967'
Right1,Right2,Right3,