Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. Albert and A.-L. Barabási, “ Statistical mechanics of complex networks,” Rev. Mod. Phys. 74, 4797 (2002).
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “ Complex networks: Structure and dynamics,” Phys. Rep. 424, 175308 (2006).
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “ Synchronization in complex networks,” Phys. Rep. 469, 93153 (2008).
A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Processes on Complex Networks ( Cambridge University Press, New York, USA, 2008).
M. E. J. Newman, “ Communities, modules and large-scale structure in networks,” Nat. Phys. 8, 2531 (2012).
E. Bullmore and O. Sporns, “ The economy of brain network organization,” Nat. Rev. Neurosci. 13, 336349 (2012).
M. Zanin and F. Lillo, “ Modelling the air transport with complex networks: A short review,” Eur. Phys. J.: Spec. Top. 215, 521 (2013).
S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gomez-Gardees, M. Romance, I. Sendina-Nadal, Z. Wang, and M. Zanin, “ The structure and dynamics of multilayer networks,” Phys. Rep. 544, 1122 (2014).
K. Lehnertz, G. Ansmann, S. Bialonski, H. Dickten, C. Geier, and S. Porz, “ Evolving networks in the human epileptic brain,” Physica D 267, 715 (2014).
C. J. Stam, “ Modern network science of neurological disorders,” Nat. Rev. Neurosci. 15, 683695 (2014).
L. Ermann, K. M. Frahm, and D. L. Shepelyansky, “ Google matrix analysis of directed networks,” Rev. Mod. Phys. 87, 12611310 (2015).
R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, “ Epidemic processes in complex networks,” Rev. Mod. Phys. 87, 925979 (2015).
A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences ( Cambridge University Press, Cambridge, UK, 2001).
E. Pereda, R. Quian Quiroga, and J. Bhattacharya, “ Nonlinear multivariate analysis of neurophysiological signals,” Prog. Neurobiol. 77, 137 (2005).
B. Gourevitch, R. Le Bouquin-Jeannes, and G. Faucon, “ Linear and nonlinear causality between signals: Methods, examples and neurophysiological applications,” Biol. Cybern. 95, 349369 (2006).
K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, and J. Bhattacharya, “ Causality detection based on information-theoretic approaches in time series analysis,” Phys. Rep. 441, 146 (2007).
N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, “ Recurrence plots for the analysis of complex systems,” Phys. Rep. 438, 237329 (2007).
K. Lehnertz, S. Bialonski, M.-T. Horstmann, D. Krug, A. Rothkegel, M. Staniek, and T. Wagner, “ Synchronization phenomena in human epileptic brain networks,” J. Neurosci. Methods 183, 4248 (2009).
K. J. Blinowska, “ Review of the methods of determination of directed connectivity from multichannel data,” Med. Biol. Eng. Comput. 49, 521529 (2011).
R. Friedrich, J. Peinke, M. Sahimi, and M. R. R. Tabar, “ Approaching complexity by stochastic methods: From biological systems to turbulence,” Phys. Rep. 506, 87162 (2011).
K. Lehnertz, “ Assessing directed interactions from neurophysiological signals–An overview,” Physiol. Meas. 32, 17151724 (2011).
D. A. Smirnov, “ Quantification of causal couplings via dynamical effects: A unifying perspective,” Phys. Rev. E 90, 062921 (2014).
R. Dahlhaus, “ Graphical interaction model for multivariate time series,” Metrika 51, 157172 (2000).
L. A. Baccalá and K. Sameshima, “ Partial directed coherence: a new concept in neural structure determination,” Biol. Cybern. 84, 463474 (2001).
M. Eichler, R. Dahlhaus, and J. Sandkühler, “ Partial correlation analysis for the identification of synaptic connections,” Biol. Cybern. 89, 289302 (2003).
Y. Chen, G. Rangarajan, J. Feng, and M. Ding, “ Analyzing multiple nonlinear time series with extended Granger causality,” Phys. Lett. A 324, 2635 (2004).
B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, and J. Timmer, “ Partial phase synchronization for multivariate synchronizing systems,” Phys. Rev. Lett. 96, 208103 (2006).
B. Schelter, M. Winterhalder, M. Eichler, M. Peifer, B. Hellwig, B. Guschlbauer, C. H. Lücking, R. Dahlhaus, and J. Timmer, “ Testing for directed influences among neural signals using partial directed coherence,” J. Neurosci. Methods 152, 210219 (2006).
S. Frenzel and B. Pompe, “ Partial mutual information for coupling analysis of multivariate time series,” Phys. Rev. Lett. 99, 204101 (2007).
D. A. Smirnov and B. P. Bezruchko, “ Detection of couplings in ensembles of stochastic oscillators,” Phys. Rev. E 79, 046204 (2009).
V. A. Vakorin, O. A. Krakovska, and A. R. McIntosh, “ Confounding effects of indirect connections on causality estimation,” J. Neurosci. Methods 184, 152160 (2009).
J. Nawrath, M. C. Romano, M. Thiel, I. Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, and B. Schelter, “ Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales,” Phys. Rev. Lett. 104, 038701 (2010).
Y. Zou, M. C. Romano, M. Thiel, N. Marwan, and J. Kurths, “ Inferring indirect coupling by means of recurrences,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 21, 10991111 (2011).
J. Runge, J. Heitzig, V. Petoukhov, and J. Kurths, “ Escaping the curse of dimensionality in estimating multivariate transfer entropy,” Phys. Rev. Lett. 108, 258701 (2012).
S. Stramaglia, G.-R. Wu, M. Pellicoro, and D. Marinazzo, “ Expanding the transfer entropy to identify information circuits in complex systems,” Phys. Rev. E 86, 066211 (2012).
L. Baccalá, C. De Brito, D. Takahashi, and K. Sameshima, “ Unified asymptotic theory for all partial directed coherence forms,” Philos. Trans. R. Soc., A 371, 20120158 (2013).
D. Kugiumtzis, “ Direct-coupling information measure from nonuniform embedding,” Phys. Rev. E 87, 062918 (2013).
D. Kugiumtzis, “ Partial transfer entropy on rank vectors,” Eur. Phys. J.: Spec. Top. 222, 401420 (2013).
L. Leistritz, B. Pester, A. Doering, K. Schiecke, F. Babiloni, L. Astolfi, and H. Witte, “ Time-variant partial directed coherence for analysing connectivity: A methodological study,” Philos. Trans. R. Soc., A 371, 20110616 (2013).
A. Papana, C. Kyrtsou, D. Kugiumtzis, and C. Diks, “ Simulation study of direct causality measures in multivariate time series,” Entropy 15, 26352661 (2013).
R. Ramb, M. Eichler, A. Ing, M. Thiel, C. Weiller, C. Grebogi, C. Schwarzbauer, J. Timmer, and B. Schelter, “ The impact of latent confounders in directed network analysis in neuroscience,” Philos. Trans. R. Soc., A 371, 20110612 (2013).
H. Elsegai, H. Shiells, M. Thiel, and B. Schelter, “ Network inference in the presence of latent confounders: The role of instantaneous causalities,” J. Neurosci. Methods 245, 91106 (2015).
L. Faes, D. Kugiumtzis, G. Nollo, F. Jurysta, and D. Marinazzo, “ Estimating the decomposition of predictive information in multivariate systems,” Phys. Rev. E 91, 032904 (2015).
W. Mader, M. Mader, J. Timmer, M. Thiel, and B. Schelter, “ Networks: On the relation of bi-and multivariate measures,” Sci. Rep. 5, 10805 (2015).
J. Runge, “ Quantifying information transfer and mediation along causal pathways in complex systems,” Phys. Rev. E 92, 062829 (2015).
B. Kralemann, A. Pikovsky, and M. Rosenblum, “ Reconstructing effective phase connectivity of oscillator networks from observations,” New J. Phys. 16, 085013 (2014).
T. Stankovski, V. Ticcinelli, P. V. E. McClintock, and A. Stefanovska, “ Coupling functions in networks of oscillators,” New J. Phys. 17, 035002 (2015).
M. G. Rosenblum and A. S. Pikovsky, “ Detecting direction of coupling in interacting oscillators,” Phys. Rev. E 64, 045202(R) (2001).
O. Sporns, Networks of the Brain ( MIT Press, Cambridge, MA, 2011).
H.-J. Park and K. Friston, “ Structural and functional brain networks: From connections to cognition,” Science 342, 1238411 (2013).
D. Yao, L. Wang, R. Oostenveld, K. Dremstrup Nielsen, L. Arendt-Nielsen, and A. C. N. Chen, “ A comparative study of different references for EEG spectral mapping: The issue of the neutral reference and the use of the infinity reference,” Physiol. Meas. 26, 173184 (2005).
D. Gabor, “ Theory of communication. Part 1: The analysis of information,” J. Inst. Electr. Eng., 93, 429441 (1946).
M. G. Rosenblum, A. S. Pikovsky, J. Kurths, C. Schaefer, and P. A. Tass, “ Phase synchronization: From theory to data analysis,” in Handbook of Biological Physics, edited by F. Moss and S. Gielen ( Elsevier Science, Amsterdam, 2001), pp. 297321.
B. Kralemann, L. Cimponeriu, M. G. Rosenblum, A. S. Pikovsky, and R. Mrowka, “ Phase dynamics of coupled oscillators reconstructed from data,” Phys. Rev. E 77, 066205 (2008).
B. Kralemann, A. Pikovsky, and M. Rosenblum, “ Reconstructing phase dynamics of oscillator networks,” Chaos 21, 025104 (2011).
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence ( Springer Verlag, Berlin, 1984).
E. N. Lorenz, “ Deterministic non-periodic flow,” J. Atmos. Sci. 20, 130141 (1963).<0130:DNF>2.0.CO;2
A. Rothkegel and K. Lehnertz, “ Conedy: A scientific tool to investigate complex network dynamics,” Chaos 22, 013125 (2012).
D. J. Watts and S. H. Strogatz, “ Collective dynamics of ‘small-world’ networks,” Nature 393, 440442 (1998).
A.-L. Barabási and R. Albert, “ Emergence of scaling in random networks,” Science 286, 509512 (1999).
D. A. Smirnov and R. G. Andrzejak, “ Detection of weak directional coupling: Phase dynamics approach versus state-space approach,” Phys. Rev. E 71, 036207 (2005).
M. Paluš and M. Vejmelka, “ Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections,” Phys. Rev. E 75, 056211 (2007).
J. Waddell, R. Dzakpasu, V. Booth, B. Riley, J. Reasor, G. Poe, and M. Żochowski, “ Causal entropies–A measure for determining changes in the temporal organization of neural systems,” J. Neurosci. Methods 162, 320332 (2007).
H. Osterhage, F. Mormann, T. Wagner, and K. Lehnertz, “ Detecting directional coupling in the human epileptic brain: Limitations and potential pitfalls,” Phys. Rev. E 77, 011914 (2008).
K. Lehnertz and H. Dickten, “ Assessing directionality and strength of coupling through symbolic analysis: An application to epilepsy patients,” Philos. Trans. R. Soc., A 373, 20140094 (2015).
F. Mormann, K. Lehnertz, P. David, and C. E. Elger, “ Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients,” Physica D 144, 358369 (2000).
W. Mader, D. Feess, R. Lange, D. Saur, V. Glauche, C. Weiller, J. Timmer, and B. Schelter, “ On the detection of direct directed information flow in fMRI,” IEEE J. Sel. Top. Signal Process. 2, 965974 (2008).
M. Jalili and M. G. Knyazeva, “ Constructing brain functional networks from EEG: Partial and unpartial correlations,” J. Integr. Neurosci. 10, 213232 (2011).
T. Zerenner, P. Friederichs, K. Lehnertz, and A. Hense, “ A Gaussian graphical model approach to climate networks,” Chaos 24, 023103 (2014).
S. Hempel, A. Koseska, J. Kurths, and Z. Nikoloski, “ Inner composition alignment for inferring directed networks from short time series,” Phys. Rev. Lett. 107, 054101 (2011).
N. Rubido, A. C. Marti, E. Bianco-Martinez, C. Grebogi, M. S. Baptista, and C. Masoller, “ Exact detection of direct links in networks of interacting dynamical units,” New J. Phys. 16, 093010 (2014).
T. Stankovski, P. V. E. McClintock, and A. Stefanovska, “ Dynamical inference: Where phase synchronization and generalized synchronization meet,” Phys. Rev. E 89, 062909 (2014).
J. T. C. Schwabedal and A. Pikovsky, “ Phase description of stochastic oscillations,” Phys. Rev. Lett. 110, 204102 (2013).
J. T. C. Schwabedal and H. Kantz, “ Optimal extraction of collective oscillations from unreliable measurements,” Phys. Rev. Lett. 116, 104101 (2016).
V. Pernice and S. Rotter, “ Reconstruction of sparse connectivity in neural networks from spike train covariances,” J. Stat. Mech.: Theory Exp. 2013, P03008.
Z. Shen, W.-X. Wang, Y. Fan, Z. Di, and Y.-C. Lai, “ Reconstructing propagation networks with natural diversity and identifying hidden sources,” Nat. Commun. 5, 4323 (2014).
Y. V. Zaytsev, A. Morrison, and M. Deger, “ Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity,” J. Comput. Neurosci. 39, 77103 (2015).
H. M. Tran and S. T. Bukkapatnam, “ Inferring sparse networks for noisy transient processes,” Sci. Rep. 6, 21963 (2016).

Data & Media loading...


Article metrics loading...



We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd