Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/9/10.1063/1.4962295
1.
R. Albert and A.-L. Barabási, “ Statistical mechanics of complex networks,” Rev. Mod. Phys. 74, 4797 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.47
2.
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “ Complex networks: Structure and dynamics,” Phys. Rep. 424, 175308 (2006).
http://dx.doi.org/10.1016/j.physrep.2005.10.009
3.
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “ Synchronization in complex networks,” Phys. Rep. 469, 93153 (2008).
http://dx.doi.org/10.1016/j.physrep.2008.09.002
4.
A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Processes on Complex Networks ( Cambridge University Press, New York, USA, 2008).
5.
M. E. J. Newman, “ Communities, modules and large-scale structure in networks,” Nat. Phys. 8, 2531 (2012).
http://dx.doi.org/10.1038/nphys2162
6.
E. Bullmore and O. Sporns, “ The economy of brain network organization,” Nat. Rev. Neurosci. 13, 336349 (2012).
http://dx.doi.org/10.1038/nrn3214
7.
M. Zanin and F. Lillo, “ Modelling the air transport with complex networks: A short review,” Eur. Phys. J.: Spec. Top. 215, 521 (2013).
http://dx.doi.org/10.1140/epjst/e2013-01711-9
8.
S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gomez-Gardees, M. Romance, I. Sendina-Nadal, Z. Wang, and M. Zanin, “ The structure and dynamics of multilayer networks,” Phys. Rep. 544, 1122 (2014).
http://dx.doi.org/10.1016/j.physrep.2014.07.001
9.
K. Lehnertz, G. Ansmann, S. Bialonski, H. Dickten, C. Geier, and S. Porz, “ Evolving networks in the human epileptic brain,” Physica D 267, 715 (2014).
http://dx.doi.org/10.1016/j.physd.2013.06.009
10.
C. J. Stam, “ Modern network science of neurological disorders,” Nat. Rev. Neurosci. 15, 683695 (2014).
http://dx.doi.org/10.1038/nrn3801
11.
L. Ermann, K. M. Frahm, and D. L. Shepelyansky, “ Google matrix analysis of directed networks,” Rev. Mod. Phys. 87, 12611310 (2015).
http://dx.doi.org/10.1103/RevModPhys.87.1261
12.
R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, “ Epidemic processes in complex networks,” Rev. Mod. Phys. 87, 925979 (2015).
http://dx.doi.org/10.1103/RevModPhys.87.925
13.
A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences ( Cambridge University Press, Cambridge, UK, 2001).
14.
E. Pereda, R. Quian Quiroga, and J. Bhattacharya, “ Nonlinear multivariate analysis of neurophysiological signals,” Prog. Neurobiol. 77, 137 (2005).
http://dx.doi.org/10.1016/j.pneurobio.2005.10.003
15.
B. Gourevitch, R. Le Bouquin-Jeannes, and G. Faucon, “ Linear and nonlinear causality between signals: Methods, examples and neurophysiological applications,” Biol. Cybern. 95, 349369 (2006).
http://dx.doi.org/10.1007/s00422-006-0098-0
16.
K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, and J. Bhattacharya, “ Causality detection based on information-theoretic approaches in time series analysis,” Phys. Rep. 441, 146 (2007).
http://dx.doi.org/10.1016/j.physrep.2006.12.004
17.
N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, “ Recurrence plots for the analysis of complex systems,” Phys. Rep. 438, 237329 (2007).
http://dx.doi.org/10.1016/j.physrep.2006.11.001
18.
K. Lehnertz, S. Bialonski, M.-T. Horstmann, D. Krug, A. Rothkegel, M. Staniek, and T. Wagner, “ Synchronization phenomena in human epileptic brain networks,” J. Neurosci. Methods 183, 4248 (2009).
http://dx.doi.org/10.1016/j.jneumeth.2009.05.015
19.
K. J. Blinowska, “ Review of the methods of determination of directed connectivity from multichannel data,” Med. Biol. Eng. Comput. 49, 521529 (2011).
http://dx.doi.org/10.1007/s11517-011-0739-x
20.
R. Friedrich, J. Peinke, M. Sahimi, and M. R. R. Tabar, “ Approaching complexity by stochastic methods: From biological systems to turbulence,” Phys. Rep. 506, 87162 (2011).
http://dx.doi.org/10.1016/j.physrep.2011.05.003
21.
K. Lehnertz, “ Assessing directed interactions from neurophysiological signals–An overview,” Physiol. Meas. 32, 17151724 (2011).
http://dx.doi.org/10.1088/0967-3334/32/11/R01
22.
D. A. Smirnov, “ Quantification of causal couplings via dynamical effects: A unifying perspective,” Phys. Rev. E 90, 062921 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.062921
23.
R. Dahlhaus, “ Graphical interaction model for multivariate time series,” Metrika 51, 157172 (2000).
http://dx.doi.org/10.1007/s001840000055
24.
L. A. Baccalá and K. Sameshima, “ Partial directed coherence: a new concept in neural structure determination,” Biol. Cybern. 84, 463474 (2001).
http://dx.doi.org/10.1007/PL00007990
25.
M. Eichler, R. Dahlhaus, and J. Sandkühler, “ Partial correlation analysis for the identification of synaptic connections,” Biol. Cybern. 89, 289302 (2003).
http://dx.doi.org/10.1007/s00422-003-0400-3
26.
Y. Chen, G. Rangarajan, J. Feng, and M. Ding, “ Analyzing multiple nonlinear time series with extended Granger causality,” Phys. Lett. A 324, 2635 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.02.032
27.
B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, and J. Timmer, “ Partial phase synchronization for multivariate synchronizing systems,” Phys. Rev. Lett. 96, 208103 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.208103
28.
B. Schelter, M. Winterhalder, M. Eichler, M. Peifer, B. Hellwig, B. Guschlbauer, C. H. Lücking, R. Dahlhaus, and J. Timmer, “ Testing for directed influences among neural signals using partial directed coherence,” J. Neurosci. Methods 152, 210219 (2006).
http://dx.doi.org/10.1016/j.jneumeth.2005.09.001
29.
S. Frenzel and B. Pompe, “ Partial mutual information for coupling analysis of multivariate time series,” Phys. Rev. Lett. 99, 204101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.204101
30.
D. A. Smirnov and B. P. Bezruchko, “ Detection of couplings in ensembles of stochastic oscillators,” Phys. Rev. E 79, 046204 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.046204
31.
V. A. Vakorin, O. A. Krakovska, and A. R. McIntosh, “ Confounding effects of indirect connections on causality estimation,” J. Neurosci. Methods 184, 152160 (2009).
http://dx.doi.org/10.1016/j.jneumeth.2009.07.014
32.
J. Nawrath, M. C. Romano, M. Thiel, I. Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, and B. Schelter, “ Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales,” Phys. Rev. Lett. 104, 038701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.038701
33.
Y. Zou, M. C. Romano, M. Thiel, N. Marwan, and J. Kurths, “ Inferring indirect coupling by means of recurrences,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 21, 10991111 (2011).
http://dx.doi.org/10.1142/S0218127411029033
34.
J. Runge, J. Heitzig, V. Petoukhov, and J. Kurths, “ Escaping the curse of dimensionality in estimating multivariate transfer entropy,” Phys. Rev. Lett. 108, 258701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.258701
35.
S. Stramaglia, G.-R. Wu, M. Pellicoro, and D. Marinazzo, “ Expanding the transfer entropy to identify information circuits in complex systems,” Phys. Rev. E 86, 066211 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.066211
36.
L. Baccalá, C. De Brito, D. Takahashi, and K. Sameshima, “ Unified asymptotic theory for all partial directed coherence forms,” Philos. Trans. R. Soc., A 371, 20120158 (2013).
http://dx.doi.org/10.1098/rsta.2012.0158
37.
D. Kugiumtzis, “ Direct-coupling information measure from nonuniform embedding,” Phys. Rev. E 87, 062918 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.062918
38.
D. Kugiumtzis, “ Partial transfer entropy on rank vectors,” Eur. Phys. J.: Spec. Top. 222, 401420 (2013).
http://dx.doi.org/10.1140/epjst/e2013-01849-4
39.
L. Leistritz, B. Pester, A. Doering, K. Schiecke, F. Babiloni, L. Astolfi, and H. Witte, “ Time-variant partial directed coherence for analysing connectivity: A methodological study,” Philos. Trans. R. Soc., A 371, 20110616 (2013).
http://dx.doi.org/10.1098/rsta.2011.0616
40.
A. Papana, C. Kyrtsou, D. Kugiumtzis, and C. Diks, “ Simulation study of direct causality measures in multivariate time series,” Entropy 15, 26352661 (2013).
http://dx.doi.org/10.3390/e15072635
41.
R. Ramb, M. Eichler, A. Ing, M. Thiel, C. Weiller, C. Grebogi, C. Schwarzbauer, J. Timmer, and B. Schelter, “ The impact of latent confounders in directed network analysis in neuroscience,” Philos. Trans. R. Soc., A 371, 20110612 (2013).
http://dx.doi.org/10.1098/rsta.2011.0612
42.
H. Elsegai, H. Shiells, M. Thiel, and B. Schelter, “ Network inference in the presence of latent confounders: The role of instantaneous causalities,” J. Neurosci. Methods 245, 91106 (2015).
http://dx.doi.org/10.1016/j.jneumeth.2015.02.015
43.
L. Faes, D. Kugiumtzis, G. Nollo, F. Jurysta, and D. Marinazzo, “ Estimating the decomposition of predictive information in multivariate systems,” Phys. Rev. E 91, 032904 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.032904
44.
W. Mader, M. Mader, J. Timmer, M. Thiel, and B. Schelter, “ Networks: On the relation of bi-and multivariate measures,” Sci. Rep. 5, 10805 (2015).
http://dx.doi.org/10.1038/srep10805
45.
J. Runge, “ Quantifying information transfer and mediation along causal pathways in complex systems,” Phys. Rev. E 92, 062829 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.062829
46.
B. Kralemann, A. Pikovsky, and M. Rosenblum, “ Reconstructing effective phase connectivity of oscillator networks from observations,” New J. Phys. 16, 085013 (2014).
http://dx.doi.org/10.1088/1367-2630/16/8/085013
47.
T. Stankovski, V. Ticcinelli, P. V. E. McClintock, and A. Stefanovska, “ Coupling functions in networks of oscillators,” New J. Phys. 17, 035002 (2015).
http://dx.doi.org/10.1088/1367-2630/17/3/035002
48.
M. G. Rosenblum and A. S. Pikovsky, “ Detecting direction of coupling in interacting oscillators,” Phys. Rev. E 64, 045202(R) (2001).
http://dx.doi.org/10.1103/PhysRevE.64.045202
49.
O. Sporns, Networks of the Brain ( MIT Press, Cambridge, MA, 2011).
50.
H.-J. Park and K. Friston, “ Structural and functional brain networks: From connections to cognition,” Science 342, 1238411 (2013).
http://dx.doi.org/10.1126/science.1238411
51.
D. Yao, L. Wang, R. Oostenveld, K. Dremstrup Nielsen, L. Arendt-Nielsen, and A. C. N. Chen, “ A comparative study of different references for EEG spectral mapping: The issue of the neutral reference and the use of the infinity reference,” Physiol. Meas. 26, 173184 (2005).
http://dx.doi.org/10.1088/0967-3334/26/3/003
52.
D. Gabor, “ Theory of communication. Part 1: The analysis of information,” J. Inst. Electr. Eng., 93, 429441 (1946).
http://dx.doi.org/10.1049/ji-3-2.1946.0074
53.
M. G. Rosenblum, A. S. Pikovsky, J. Kurths, C. Schaefer, and P. A. Tass, “ Phase synchronization: From theory to data analysis,” in Handbook of Biological Physics, edited by F. Moss and S. Gielen ( Elsevier Science, Amsterdam, 2001), pp. 297321.
54.
B. Kralemann, L. Cimponeriu, M. G. Rosenblum, A. S. Pikovsky, and R. Mrowka, “ Phase dynamics of coupled oscillators reconstructed from data,” Phys. Rev. E 77, 066205 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.066205
55.
B. Kralemann, A. Pikovsky, and M. Rosenblum, “ Reconstructing phase dynamics of oscillator networks,” Chaos 21, 025104 (2011).
http://dx.doi.org/10.1063/1.3597647
56.
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence ( Springer Verlag, Berlin, 1984).
57.
E. N. Lorenz, “ Deterministic non-periodic flow,” J. Atmos. Sci. 20, 130141 (1963).
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
58.
A. Rothkegel and K. Lehnertz, “ Conedy: A scientific tool to investigate complex network dynamics,” Chaos 22, 013125 (2012).
http://dx.doi.org/10.1063/1.3685527
59.
D. J. Watts and S. H. Strogatz, “ Collective dynamics of ‘small-world’ networks,” Nature 393, 440442 (1998).
http://dx.doi.org/10.1038/30918
60.
A.-L. Barabási and R. Albert, “ Emergence of scaling in random networks,” Science 286, 509512 (1999).
http://dx.doi.org/10.1126/science.286.5439.509
61.
D. A. Smirnov and R. G. Andrzejak, “ Detection of weak directional coupling: Phase dynamics approach versus state-space approach,” Phys. Rev. E 71, 036207 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.036207
62.
M. Paluš and M. Vejmelka, “ Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections,” Phys. Rev. E 75, 056211 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.056211
63.
J. Waddell, R. Dzakpasu, V. Booth, B. Riley, J. Reasor, G. Poe, and M. Żochowski, “ Causal entropies–A measure for determining changes in the temporal organization of neural systems,” J. Neurosci. Methods 162, 320332 (2007).
http://dx.doi.org/10.1016/j.jneumeth.2006.12.008
64.
H. Osterhage, F. Mormann, T. Wagner, and K. Lehnertz, “ Detecting directional coupling in the human epileptic brain: Limitations and potential pitfalls,” Phys. Rev. E 77, 011914 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.011914
65.
K. Lehnertz and H. Dickten, “ Assessing directionality and strength of coupling through symbolic analysis: An application to epilepsy patients,” Philos. Trans. R. Soc., A 373, 20140094 (2015).
http://dx.doi.org/10.1098/rsta.2014.0094
66.
F. Mormann, K. Lehnertz, P. David, and C. E. Elger, “ Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients,” Physica D 144, 358369 (2000).
http://dx.doi.org/10.1016/S0167-2789(00)00087-7
67.
W. Mader, D. Feess, R. Lange, D. Saur, V. Glauche, C. Weiller, J. Timmer, and B. Schelter, “ On the detection of direct directed information flow in fMRI,” IEEE J. Sel. Top. Signal Process. 2, 965974 (2008).
http://dx.doi.org/10.1109/JSTSP.2008.2008260
68.
M. Jalili and M. G. Knyazeva, “ Constructing brain functional networks from EEG: Partial and unpartial correlations,” J. Integr. Neurosci. 10, 213232 (2011).
http://dx.doi.org/10.1142/S0219635211002725
69.
T. Zerenner, P. Friederichs, K. Lehnertz, and A. Hense, “ A Gaussian graphical model approach to climate networks,” Chaos 24, 023103 (2014).
http://dx.doi.org/10.1063/1.4870402
70.
S. Hempel, A. Koseska, J. Kurths, and Z. Nikoloski, “ Inner composition alignment for inferring directed networks from short time series,” Phys. Rev. Lett. 107, 054101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.054101
71.
N. Rubido, A. C. Marti, E. Bianco-Martinez, C. Grebogi, M. S. Baptista, and C. Masoller, “ Exact detection of direct links in networks of interacting dynamical units,” New J. Phys. 16, 093010 (2014).
http://dx.doi.org/10.1088/1367-2630/16/9/093010
72.
T. Stankovski, P. V. E. McClintock, and A. Stefanovska, “ Dynamical inference: Where phase synchronization and generalized synchronization meet,” Phys. Rev. E 89, 062909 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.062909
73.
J. T. C. Schwabedal and A. Pikovsky, “ Phase description of stochastic oscillations,” Phys. Rev. Lett. 110, 204102 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.204102
74.
J. T. C. Schwabedal and H. Kantz, “ Optimal extraction of collective oscillations from unreliable measurements,” Phys. Rev. Lett. 116, 104101 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.104101
75.
V. Pernice and S. Rotter, “ Reconstruction of sparse connectivity in neural networks from spike train covariances,” J. Stat. Mech.: Theory Exp. 2013, P03008.
http://dx.doi.org/10.1088/1742-5468/2013/03/P03008
76.
Z. Shen, W.-X. Wang, Y. Fan, Z. Di, and Y.-C. Lai, “ Reconstructing propagation networks with natural diversity and identifying hidden sources,” Nat. Commun. 5, 4323 (2014).
http://dx.doi.org/10.1038/ncomms5323
77.
Y. V. Zaytsev, A. Morrison, and M. Deger, “ Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity,” J. Comput. Neurosci. 39, 77103 (2015).
http://dx.doi.org/10.1007/s10827-015-0565-5
78.
H. M. Tran and S. T. Bukkapatnam, “ Inferring sparse networks for noisy transient processes,” Sci. Rep. 6, 21963 (2016).
http://dx.doi.org/10.1038/srep21963
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/9/10.1063/1.4962295
Loading
/content/aip/journal/chaos/26/9/10.1063/1.4962295
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/9/10.1063/1.4962295
2016-09-09
2016-10-01

Abstract

We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/9/1.4962295.html;jsessionid=SiaqF-wBQhDShj1Xl8pw4rRZ.x-aip-live-06?itemId=/content/aip/journal/chaos/26/9/10.1063/1.4962295&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/9/10.1063/1.4962295&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/9/10.1063/1.4962295'
Right1,Right2,Right3,