Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/26/9/10.1063/1.4962644
1.
D. Barkley, “ Euclidean symmetry and the dynamics of rotating spiral waves,” Phys. Rev. Lett. 72, 164167 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.164
2.
I. V. Biktasheva, Y. E. Elkin, and V. N. Biktashev, “ Localized sensitivity of spiral waves in the complex Ginzburg-Landau equation,” Phys. Rev. E 57, 26562659 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.2656
3.
J. P. Keener, “ The dynamics of three-dimensional scroll waves in excitable media,” Physica D 31, 269276 (1988).
http://dx.doi.org/10.1016/0167-2789(88)90080-2
4.
V. Biktashev and A. Holden, “ Resonant drift of an autowave vortex in a bounded medium,” Phys. Lett. A 181, 216224 (1993).
http://dx.doi.org/10.1016/0375-9601(93)90642-D
5.
V. N. Biktashev and A. V. Holden, “ Resonant drift of autowave vortices in two dimensions and the effects of boundaries and inhomogeneities,” Chaos, Soliton Fractals 5, 575622 (1995).
http://dx.doi.org/10.1016/0960-0779(93)E0044-C
6.
H. Henry and V. Hakim, “ Linear stability of scroll waves,” Phys. Rev. Lett. 85, 53285331 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5328
7.
H. Henry and V. Hakim, “ Scroll waves in isotropic excitable media: Linear instabilities, bifurcations, and restabilized states,” Phys. Rev. E 65, 046235 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.046235
8.
I. V. Biktasheva, Y. E. Elkin, and V. N. Biktashev, “ Resonant drift of spiral waves in the complex Ginzburg-Landau equation,” J. Biol. Phys. 25, 115127 (1999).
http://dx.doi.org/10.1023/A:1005134901624
9.
I. V. Biktasheva and V. N. Biktashev, “ Response functions of spiral wave solutions of the complex Ginzburg-Landau equation,” J. Nonlinear Math. Phys. 8, 2834 (2001).
http://dx.doi.org/10.2991/jnmp.2001.8.s.6
10.
I. Aranson, L. Kramer, and A. Weber, “ On the interaction of spiral waves in non-equilibrium media,” Physica D 53, 376384 (1991).
http://dx.doi.org/10.1016/0167-2789(91)90069-L
11.
L. Pismen and A. Nepomnyashchy, “ Mobility of spiral waves,” Phys. Rev. A 44, R2243 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.R2243
12.
L. Pismen and A. Nepomnyashchy, “ On interaction of spiral waves,” Physica D 54, 183193 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90033-J
13.
I. V. Biktasheva, A. V. Holden, and V. N. Biktashev, “ Localization of response functions of spiral waves in the FitzHugh–Nagumo system,” Int. J. Bifurication Chaos 16, 15471555 (2006).
http://dx.doi.org/10.1142/S0218127406015490
14.
I. V. Biktasheva, H. Dierckx, and V. N. Biktashev, “ Drift of scroll waves in thin layers caused by thickness features: Asymptotic theory and numerical simulations,” Phys. Rev. Lett. 114, 068302 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.068302
15.
V. N. Biktashev, I. V. Biktasheva, and N. A. Sarvazyan, “ Evolution of spiral and scroll waves of excitation in a mathematical model of ischaemic border zone,” PLoS One 6, e24388 (2011).
http://dx.doi.org/10.1371/journal.pone.0024388
16.
V. Biktashev, “ Causodynamics of autowave patterns,” Phys. Rev. Lett. 95, 084501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.084501
17.
O. A. Mornev, I. M. Tsyganov, O. V. Aslanidi, and M. A. Tsyganov, “ Beyond the Kuramoto-Zel'dovich theory: Steadily rotating concave spiral waves and their relation to the echo phenomenon,” J. Exp. Theor. Phys. Lett. 77, 270275 (2003).
http://dx.doi.org/10.1134/1.1577755
18.
I. V. Biktasheva and V. N. Biktashev, “ Wave-particle dualism of spiral waves dynamics,” Phys. Rev. E 67, 026221 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.026221
19.
J. Langham and D. Barkley, “ Non-specular reflections in a macroscopic system with wave-particle duality: Spiral waves in bounded media,” Chaos 23, 013134 (2013); e-print arXiv:1304.0591.
20.
J. Langham, I. Biktasheva, and D. Barkley, “ Asymptotic dynamics of reflecting spiral waves,” Phys. Rev. E 90, 062902 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.062902
21.
D. Allexandre and N. F. Otani, “ Preventing alternans-induced spiral wave breakup in cardiac tissue: An ion-channel-based approach,” Phys. Rev. E 70, 061903 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.061903
22.
F. Fenton and A. Karma, “ Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation,” Chaos 8, 2047 (1998).
http://dx.doi.org/10.1063/1.166311
23.
A. Garzón, R. O. Grigoriev, and F. H. Fenton, “ Model-based control of cardiac alternans in Purkinje fibers,” Phys. Rev. E 84, 041927 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.041927
24.
A. Garzón, R. O. Grigoriev, and F. H. Fenton, “ Continuous-time control of alternans in long purkinje fibers,” Chaos 24, 033124 (2014).
http://dx.doi.org/10.1063/1.4893295
25.
A. Karma, “ Spiral breakup in model equations of action-potential propagation in cardiac tissue,” Phys. Rev. Lett. 71, 11031106 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.1103
26.
A. Karma, “ Electrical alternans and spiral wave breakup in cardiac tissue,” Chaos 4, 461472 (1994).
http://dx.doi.org/10.1063/1.166024
27.
J. M. Pastore, S. D. Girouard, K. R. Laurita, F. G. Akar, and D. S. Rosenbaum, “ Mechanism linking T-wave alternans to the genesis of cardiac fibrillation,” Circulation 99, 13851394 (1999).
http://dx.doi.org/10.1161/01.CIR.99.10.1385
28.
J. Jalife, “ Ventricular fibrillation: Mechanisms of initiation and maintenance,” Annu. Rev. Physiol. 62, 25 (2000).
http://dx.doi.org/10.1146/annurev.physiol.62.1.25
29.
K. H. ten Tusscher and A. V. Panfilov, “ Alternans and spiral breakup in a human ventricular tissue model,” Am. J. Physiol. 291, H1088H1100 (2006).
http://dx.doi.org/10.1152/ajpheart.00109.2006
30.
J. B. Nolasco and R. W. Dahlen, “ A graphic method for the study of alternation in cardiac action potentials,” J. Appl. Physiol. 25, 191196 (1968).
31.
L. H. Frame and M. B. Simson, “ Oscillations of conduction, action potential duration, and refractoriness: A mechanism for spontaneous termination of reentrant tachycardias,” Circulation 78, 12771287 (1988).
http://dx.doi.org/10.1161/01.CIR.78.5.1277
32.
C. D. Marcotte and R. O. Grigoriev, “ Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue,” Chaos 25, 063116 (2015).
http://dx.doi.org/10.1063/1.4922596
33.
V. N. Biktashev, A. V. Holden, and E. V. Nikolaev, “ Spiral wave meander and symmetry of the plane,” Int. J. Bifurication Chaos 6, 24332440 (1996).
http://dx.doi.org/10.1142/S0218127496001582
34.
D. Barkley, “ Linear stability analysis of rotating spiral waves in excitable media,” Phys. Rev. Lett. 68, 20902093 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.2090
35.
G. Byrne, C. D. Marcotte, and R. O. Grigoriev, “ Exact coherent structures and chaotic dynamics in a model of cardiac tissue,” Chaos 25, 033108 (2015).
http://dx.doi.org/10.1063/1.4915143
36.
W. E. Arnoldi, “ The principle of minimized iterations in the solution of the matrix eigenvalue problem,” Q. Appl. Math. 9, 1729 (1951).
37.
Y. Saad and M. H. Schultz, “ GMres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7, 856869 (1986).
http://dx.doi.org/10.1137/0907058
38.
I. V. Biktasheva, D. Barkley, V. N. Biktashev, G. V. Bordyugov, and A. J. Foulkes, “ Computation of the response functions of spiral waves in active media,” Phys. Rev. E 79, 056702 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.056702
39.
B. Sandstede and A. Scheel, “ Absolute and convective instabilities of waves on unbounded and large bounded domains,” Physica D 145, 233277 (2000).
http://dx.doi.org/10.1016/S0167-2789(00)00114-7
40.
B. Sandstede and A. Scheel, “ Absolute versus convective instability of spiral waves,” Phys. Rev. E 62, 77087714 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.7708
41.
P. Wheeler and D. Barkley, “ Computation of spiral spectra,” SIAM J. Appl. Dyn. Syst. 5, 157177 (2006).
http://dx.doi.org/10.1137/050624273
42.
B. Sandstede and A. Scheel, “ Defects in oscillatory media: toward a classification,” SIAM J. Appl. Dyn. Syst. 3, 168 (2004).
http://dx.doi.org/10.1137/030600192
43.
I. V. Biktasheva, V. N. Biktashev, and A. J. Foulkes, “ Computation of the drift velocity of spiral waves using response functions,” Phys. Rev. E 81, 066202 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.066202
44.
I. S. Aranson, L. Kramer, and A. Weber, “ Theory of interaction and bound states of spiral waves in oscillatory media,” Phys. Rev. E 47, 32313241 (1993).
http://dx.doi.org/10.1103/PhysRevE.47.3231
45.
I. Aranson, D. Kessler, and I. Mitkov, “ Drift of spiral waves in excitable media,” Physica D 85, 142155 (1995).
http://dx.doi.org/10.1016/0167-2789(95)00113-I
46.
V. N. Biktashev and I. V. Biktasheva, “ Orbital motion of spiral waves in excitable media,” Phys. Rev. Lett. 104, 058302 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.058302
47.
I. Biktasheva, “ Drift of spiral waves in the complex Ginzburg-Landau equation due to media inhomogeneities,” Phys. Rev. E 62, 8800 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.8800
48.
K. I. Agladze, V. A. Davydov, and A. S. Mikhailov, “ An observation of resonance of spiral waves in distributed excitable medium,” JETP Lett. 45, 767770 (1987).
49.
I. R. Efimov, R. A. Gray, and B. J. Roth, “ Virtual electrodes and deexcitation: New insights into fibrillation induction and defibrillation,” J. Cardiovasc. Electrophysiol. 11, 339353 (2000).
http://dx.doi.org/10.1111/j.1540-8167.2000.tb01805.x
50.
F. H. Fenton, S. Luther, E. M. Cherry, N. F. Otani, V. Krinksy, A. Pumir, E. Bodenschatz, and R. F. Gilmour, Jr., “ Termination of atrial fibrillation using pulsed low-energy far-field stimulation,” Circulation 120, 467476 (2009).
http://dx.doi.org/10.1161/CIRCULATIONAHA.108.825091
51.
W. W. Hager, “ Runge-kutta methods in optimal control and the transformed adjoint system,” Numer. Math. 87, 247282 (2000).
http://dx.doi.org/10.1007/s002110000178
52.
A. Sandu, “ On the properties of runge-kutta discrete adjoints,” in Computational Science–ICCS 2006 ( Springer, 2006), pp. 550557.
53.
W. H. Enright, K. Jackson, S. P. Nørsett, and P. G. Thomsen, “ Interpolants for runge-kutta formulas,” ACM Trans. Math. Softw. (TOMS) 12, 193218 (1986).
http://dx.doi.org/10.1145/7921.7923
http://aip.metastore.ingenta.com/content/aip/journal/chaos/26/9/10.1063/1.4962644
Loading
/content/aip/journal/chaos/26/9/10.1063/1.4962644
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/26/9/10.1063/1.4962644
2016-09-15
2016-09-26

Abstract

This paper introduces a numerical method for computing the spectrum of adjoint (left) eigenfunctions of spiral wave solutions to reaction-diffusion systems in arbitrary geometries. The method is illustrated by computing over a hundred eigenfunctions associated with an unstable time-periodic single-spiral solution of the Karma model on a square domain. We show that all leading adjoint eigenfunctions are exponentially localized in the vicinity of the spiral tip, although the marginal modes (response functions) demonstrate the strongest localization. We also discuss the implications of the localization for the dynamics and control of unstable spiral waves. In particular, the interaction with no-flux boundaries leads to a drift of spiral waves which can be understood with the help of the response functions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/chaos/26/9/1.4962644.html;jsessionid=poTdNqCUdBd1Xvgz6qHAsILs.x-aip-live-02?itemId=/content/aip/journal/chaos/26/9/10.1063/1.4962644&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/chaos
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=chaos.aip.org/26/9/10.1063/1.4962644&pageURL=http://scitation.aip.org/content/aip/journal/chaos/26/9/10.1063/1.4962644'
Right1,Right2,Right3,