Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. T. Winfree, “ Biological rhythms and the behavior of populations of coupled oscillators,” J. Theor. Biol. 16, 15 (1967).
Y. Kuramoto, “ Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Araki ( Springer-Verlag, 1975), p. 420.
C. Huygens, Letters to de Sluse (Letters No. 1333, No. 1335, and No. 1345) (1665).
R. Hooke, Micrographia: Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon ( Jo. Martin and Ja. Allestry, London, 1665).
R. A. DeSilva, “ George Ralph Mines, ventricular fibrillation and the discovery of the vulnerable period,” J. Am. Coll. Cardiol. 29, 1397 (1997).
B. P. Belousov, “ Periodicheski deistvuyushchaya reaktsia i ee mekhanism” [Periodically acting reaction and its mechanism], Sbornik Referatov po Radiotsionnoi Meditsine, 1958 [Collection of Abstracts on Radiation Medicine, 1958] p. 145 (1959).
Y. Kuramoto and D. Battogtokh, “ Coexistence of coherence and incoherence in nonlocally, coupled phase oscillators,” Nonlinear Phenom. Complex Syst. 5, 380 (2002).
D. M. Abrams and S. H. Strogatz, “ Chimera states for coupled oscillators,” Phys. Rev. Lett. 93, 174102 (2004).
I. Fischer, R. Vicente, J. M. Buldú, M. Peil, C. R. Mirasso, M. C. Torrent, and J. García-Ojalvo, “ Zero-lag long-range synchronization via dynamical relaying,” Phys. Rev. Lett. 97, 123902 (2006).
V. Nicosia, M. Valencia, M. Chavez, A. Díaz-Guilera, and V. Latora, “ Remote synchronization reveals network symmetries and functional modules,” Phys. Rev. Lett. 110, 174102 (2013).
L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, “ Cluster synchronization and isolated desynchronization in complex networks with symmetries,” Nat. Commun. 5, 4079 (2014).
T. Nishikawa and A. E. Motter, “ Symmetric states requiring system asymmetry,” Phys. Rev. Lett. 117, 114101 (2016).
S. H. Strogatz, “ From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators,” Physica D 143, 1 (2000).
F. Dörfler and F. Bullo, “ Synchronization in complex networks of phase oscillators: A survey,” Automatica 50, 1539 (2014).
H. Sakaguchi and Y. Kuramoto, “ A soluble active rotator model showing phase transitions via mutual entertainment,” Prog. Theor. Phys. 76, 576 (1986).
H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, “ Local and global self-entrainments in oscillator lattices,” Prog. Theor. Phys. 77, 1005 (1987).
S. H. Strogatz and R. E. Mirollo, “ Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies,” Physica D 31, 143 (1988).
K. Wiesenfeld, P. Colet, and S. H. Strogatz, “ Synchronization transitions in a disordered Josephson series array,” Phys. Rev. Lett. 76, 404 (1996).
E. Montbrió, J. Kurths, and B. Blasius, “ Synchronization of two interacting populations of oscillators,” Phys. Rev. E 70, 056125 (2004).
A. Jadbabaie, N. Motee, and M. Barahona, “ On the stability of the Kuramoto model of coupled nonlinear oscillators,” Proc. Am. Control Conf. 5, 4296 (2004).
Y. Moren and A. F. Pacheco, “ Synchronization of Kuramoto oscillators in scale-free networks,” EPL 68, 603 (2004).
E. Oh, K. Rho, H. Hong, and B. Kahng, “ Modular synchronization in complex networks,” Phys. Rev. E 72, 047101 (2005).
A. Arenas, A. Díaz-Guilera, and C. J. Pérez-Vicente, “ Synchronization processes in complex networks,” Physica D 224, 27 (2006).
S. Boccaletti et al., “ Detecting complex network modularity by dynamical clustering,” Phys. Rev. E 75, 045102 (2007).
M. J. Panaggio and D. M. Abrams, “ Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators,” Nonlinearity 28, R67 (2015).
T. Yamada and H. Fujisaka, “ Stability theory of synchronized motion in coupled-oscillator systems. II,” Prog. Theor. Phys. 70, 1240 (1983).
T. Yamada and H. Fujisaka, “ Stability theory of synchronized motion in coupled-oscillator systems. III,” Prog. Theor. Phys. 72, 885 (1984).
H. Fujisaka and T. Yamada, “ Stability theory of synchronized motion in coupled-oscillator systems. IV,” Prog. Theor. Phys. 74, 918 (1985).
A. Pikovskii, “ On the interaction of strange attractors,” Z. Phys. B 55, 149 (1984).
V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, “ Stochastic synchronization of oscillation in dissipative systems,” Radiophys. Quantum Electron. 29, 795 (1986).
A. R. Volkovskii and N. F. Rul'kov, “ Experimental study of bifurcations at the threshold for stochastic locking,” Sov. Tech. Phys. Lett. 15, 249 (1989).
L. M. Pecora and T. L. Carroll, “ Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821 (1990).
J. F. Heagy, T. L. Carroll, and L. M. Pecora, “ Synchronous chaos in coupled oscillator systems,” Phys. Rev. E 50, 1874 (1994).
G. Hu, J. Yang, and W. Liu, “ Instability and controllability of linearly coupled oscillators: Eigenvalue analysis,” Phys. Rev. E 58, 4440 (1998).
P. M. Gade, “ Synchronization in coupled map lattices with random nonlocal connectivity,” Phys. Rev. E 54, 64 (1996).
C. W. Wu and L. O. Chua, “ On a conjecture regarding the synchronization in an array of linearly coupled dynamical systems,” IEEE Trans. Circuits Syst., I 43, 161 (1996).
L. M. Pecora and T. L. Carroll, “ Master stability functions for synchronized coupled systems,” Phys. Rev, Lett. 80, 2109 (1998).
D. J. Watts and S. Strogatz, “ Collective dynamics of 'small-world' networks,” Nature 393, 440 (1998).
A.-L. Barabási and R. Albert, “ Emergence of scaling in random networks,” Science 286, 509 (1999).
C. Zhou and J. Kurths, “ Hierarchical synchronization in complex networks with heterogeneous degrees,” Chaos 16, 015104 (2006).
C. Fu et al., “ Topological control of synchronous patterns in systems of networked chaotic oscillators,” Phys. Rev. E 87, 032909 (2013).
I. Kanter et al., “ Synchronization of unidirectional time delay chaotic networks and the greatest common divisor,” EPL 93, 60003 (2011).
D. P. Rosin, D. Rontani, and D. J. Gauthier, “ Control of synchronization patterns in neural-like Boolean networks,” Phys. Rev. Lett. 110, 104102 (2013).
F. Sorrentino and E. Ott, “ Network synchronization of groups,” Phys. Rev. E 76, 056114 (2007).
C. Williams et al., “ Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators,” Phys. Rev. Lett. 110, 064104 (2013).
V. Belykh et al., “ Cluster synchronization in oscillatory networks,” Chaos 18, 037106 (2008).
O. D'Huys et al., “ Synchronization properties of network motifs: Influence of coupling delay and symmetry,” Chaos 18, 037116 (2008).
G. Russo and J.-J. E. Slotine, “ Symmetries, stability, and control in nonlinear systems and networks,” Phys. Rev. E 84, 041929 (2011).
K. Judd, “ Networked dynamical systems with linear coupling: Synchronisation patterns, coherence and other behaviours,” Chaos 23, 043112 (2013).
N. O'Clery, Y. Yuan, G.-B. Stan, and M. Barahona., “ Observability and coarse graining of consensus dynamics through the external equitable partition,” Phys. Rev. E 88, 042805 (2013).
M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory ( Springer-Verlag, 1985).
W. Stein, SAGE: Software for Algebra an Geometry Experimentation, see; (2013).
M. Golubitsky, I. Stewart, and A. Török, “ Patterns of synchrony in coupled cell networks with multiple arrows,” SIAM J. Appl. Dyn. Syst. 4(1), 78 (2005).
M. Golubitsky and I. Stewart, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space ( Berkhäuser-Verlag, 2002).
I. Belykh and M. Hasler, “ Mesoscale and clusters of synchrony in networks of bursting neurons,” Chaos 21, 016106 (2011).
B. Ottino-Löffler and S. H. Strogatz, “ Frequency spirals,” Chaos 26, 094804 (2016).
L. Wang and G. Chen, “ Synchronization of multi-agent systems with metric-topological interactions,” Chaos 26, 094809 (2016).
Z. Lu, K. Klein-Cardeña, S. Lee, T. M. Antonsen, M. Girvan, and E. Ott, “ Resynchronization of circadian oscillators and the east-west asymmetry of jet-lag,” Chaos 26, 094811 (2016).
C. Bick, P. Ashwin, and A. Rodrigues, “ Chaos in generically coupled phase oscillator networks with nonpairwise interactions,” Chaos 26, 094814 (2016).
L. DeVille and B. Ermentrout, “ Phase-locked patterns of the Kuramoto model on 3-regular graphs,” Chaos 26, 094820 (2016).
N. Fujiwara, J. Kurths, and A. Díaz-Guilera, “ Synchronization of mobile chaotic oscillator networks,” Chaos 26, 094824 (2016).
J. D. Hart, K. Bansal, T. E. Murphy, and R. Roy, “ Experimental observation of chimera and cluster states in a minimal globally coupled network,” Chaos 26, 094801 (2016).
F. P. Kemeth, S. W. Haugland, L. Schmidt, I. G. Kevrekidis, and K. Krischer, “ A classification scheme for chimera states,” Chaos 26, 094815 (2016).
E. A. Martens, C. Bick, and M. J. Panaggio, “ Chimera states in two populations with heterogeneous phase-lag,” Chaos 26, 094819 (2016).
I. Belykh, B. N. Brister, and V. N. Belykh, “ Bistability of patterns of synchrony in Kuramoto oscillators with inertia,” Chaos 26, 094822 (2016).
S. Nkomo, M. R. Tinsley, and K. Showalter, “ Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators,” Chaos 26, 094826 (2016).
S. Ulonska, I. Omelchenko, A. Zakharova, and E. Schöll, “ Chimera states in networks of Van der Pol oscillators with hierarchical connectivities,” Chaos 26, 094825 (2016).
M. Golubitsky and I. Stewart, “ Rigid patterns of synchrony for equilibria and periodic cycles in network dynamics,” Chaos 26, 094803 (2016).
T. Nishikawa and A. E. Motter, “ Network-complement transitions, symmetries, and cluster synchronization,” Chaos 26, 094818 (2016).
M. T. Schaub, N. O'Clery, Y. N. Billeh, J.-C. Delvenne, R. Lambiotte, and M. Barahona, “ Graph partitions and cluster synchronization in networks of oscillators,” Chaos 26, 094821 (2016).
F. Sorrentino and L. Pecora, “ Approximate cluster synchronization in networks with symmetries and parameter mismatches,” Chaos 26, 094823 (2016).
P. S. Skardal, D. Taylor, and J. Sun, “ Optimal synchronization of directed complex networks,” Chaos 26, 094807 (2016).
R. Nagao, W. Zou, J. Kurths, and I. Z. Kiss, “ Restoring oscillatory behavior from amplitude death with anti-phase synchronization patterns in networks of electrochemical oscillations,” Chaos 26, 094808 (2016).
P. S. Skardal and A. Arenas, “ On controlling networks of limit-cycle oscillators,” Chaos 26, 094812 (2016).
T. Deng, W. Liu, Y. Zhu, J. Xiao, and J. Kurths, “ Reviving oscillation with optimal spatial period of frequency distribution in coupled oscillators,” Chaos 26, 094813 (2016).
A. Tandon, M. Schröder, M. Mannattil, M. Timme, and S. Chakraborty, “ Synchronizing noisy nonidentical oscillators by transient uncoupling,” Chaos 26, 094817 (2016).
C. R. Laing, “ Travelling waves in arrays of delay-coupled phase oscillators,” Chaos 26, 094802 (2016).
Y. Kobayashi and H. Kori, “ Synchronization failure caused by interplay between noise and network heterogeneity,” Chaos 26, 094805 (2016).
O. E. Omel'chenko and M. Wolfrum, “ Is there an impact of small phase lags in the Kuramoto model?,” Chaos 26, 094806 (2016).
O. D'Huys, J. Lohmann, N. D. Haynes, and D. J. Gauthier, “ Super-transient scaling in time-delay autonomous Boolean network motifs,” Chaos 26, 094810 (2016).
J. Emenheiser, A. Chapman, M. Pósfai, J. P. Crutchfield, M. Mesbahi, and R. M. D'Souza, “ Patterns of patterns of synchronization: Noise induced attractor switching in rings of coupled nonlinear oscillators,” Chaos 26, 094816 (2016).

Data & Media loading...


Article metrics loading...



The study of synchronization of coupled systems is currently undergoing a major surge fueled by recent discoveries of new forms of collective dynamics and the development of techniques to characterize a myriad of new patterns of network synchronization. This includes chimera states, phenomena determined by symmetry, remote synchronization, and asymmetry-induced synchronization. This Focus Issue presents a selection of contributions at the forefront of these developments, to which this introduction is intended to offer an up-to-date foundation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd