1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/chaos/5/1/10.1063/1.166141
1.
1.R. I. Kitney and O. Rompelman, The Study of Heart-Rate Variability (Oxford University Press, Oxford, 1980).
2.
2.A. L. Goldberger, D. R. Rigney, and B. J. West, Sci. Am. 262, 4249 (1990).
3.
3.C.-K. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley, and A. L. Goldberger, Phys. Rev. Lett. 70, 13431346 (1993).
4.
4.C.-K. Peng, S. V. Buldyrev, J. M. Hausdorff, S. Havlin, J. E. Mietus, M. Simons, H. E. Stanley, and A. L. Goldberger, in Fractals in Biology and Medicine, edited by T. F. Nonnenmacher, G. A. Losa, and E. R, Weibel (Birkhaüser-Verlag, Basel, 1994), pp. 55–65.
5.
5.P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381384 (1987).
6.
6.H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, London, 1971).
7.
7.M. N. Levy, Circ. Res. 29, 437445 (1971).
8.
8.C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Phys. Rev. E 49, 16911695 (1994).
9.
9.Computer software of DFA algorithm is available upon request; contact C.-K. Peng (e-mail: peng[chaos.bih.harvard.edu).
10.
10.S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, H. E. Stanley, and M. Simons, Biophys. J. 65, 26752681 (1993).
11.
11.S. M. Ossadnik, S. V. Buldyrev, A. L. Goldberger, S. Havlin, R. N. Man- tegna, C.-K. Peng, M. Simons, and H. E. Stanley, Biophys. J. 67, 6470 (1994).
12.
12.J. M. Hausdorff, C.-K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger, J. Appl. Physiol. 78, 349358 (1995).
13.
13.E. W. Montroll and M. F. Shlesinger, in Nonequilibrium Phenomena II. From Stochastics to Hydrodynamics, edited by J. L. Lebowitz and E. W. Montroll (North-Holland, Amsterdam, 1984), pp 1–121.
14.
14.S. Havlin, R. B. Selinger, M. Schwartz, H. E. Stanley, and A. Bunde, Phys. Rev. Lett. 61, 14381441 (1988).
15.
15.W. H. Press, Comments Astrophys. 7, 103119 (1978).
16.
16.C.-K. Peng, S. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H. E. Stanley, Nature 356, 168170 (1992).
17.
17.S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, and H. E. Stanley, in Fractals in Science, edited by A. Bunde and S. Havlin (Springer-Verlag, Berlin, 1994), pp. 48–87.
18.
18.ECG recordings of Holter monitor tapes were processed both manually and in a fully automated manner using our computerized beat recognition algorithm (Aristotle). Abnormal beats were deleted from each data set. The deletion has practically no effect on the DFA analysis since less than \% of total beats were removed. Patients in the heart failure group were receiving conventional medical therapy prior to receiving an investigational cardiotonic drug; see D. S. Baimet al., J. Am. Coll. Cardiol. 7, 661670 (1986).
19.
19.A. L. Goldberger, D. R. Rigney, J. Mietus, E. M. Antman, and S. Greenwald, Experientia 44, 983987 (1988).
20.
20.Typical regression fit shows excellent linearity of double log graph (indicated by correlation coefficient for both groups. However, usually data from healthy subjects show even better linearity on log-log plots than data from subjects with heart disease. Our estimate of a is consistent with the previous analysis in Ref. 3. Note, however, that in Ref. 3 the analysis was performed on the interbeat increment data to avoid the problem of non-stationarity. Therefore, the scaling exponent computed in Ref. 3 is smaller than the a exponent computed by DFA by a value of 1 (due to the integration process in DFA).
21.
21.A. L. Goldberger and B. J. West, Yale J. Biol. Med. 60, 421435 (1987).
22.
22.M. Kobayashi and T. Musha, IEEE Trans. Biomed. Eng. BE-29, 456457 (1982).
23.
23.W. B. Cannon, Physiol. Rev. 9, 399431 (1929).
24.
24.A further refinement (not presented here) may be obtained by not arbitrarily setting the crossover scale to be 16 beats for all data sets. Instead, each individual data set could have its own ranges for fitting and that depend on the specific crossover point in the given data set.
25.
25.C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, M. Simons, and H. E. Stanley, Phys. Rev. E 47, 37303733 (1993).
26.
26.We also tested these calculations by varying the fitting range for . We find that the results are very similar when we measure from 16 beats to 128 beats. However, when we move the upper fitting range for from 128 beats to 256 beats or more, the pathologic data sets show larger variation of leading to less obvious separation from normal subjects. This is partly due to the fact that, for finite length data sets, the calculation error of F(n) increases with Therefore, scaling exponents obtained over larger values of n will have greater uncertainty.
http://aip.metastore.ingenta.com/content/aip/journal/chaos/5/1/10.1063/1.166141
Loading
/content/aip/journal/chaos/5/1/10.1063/1.166141
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/5/1/10.1063/1.166141
1995-03-01
2015-05-25
Loading

Full text loading...

true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
http://aip.metastore.ingenta.com/content/aip/journal/chaos/5/1/10.1063/1.166141
10.1063/1.166141
SEARCH_EXPAND_ITEM