1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Fundamentals of synchronization in chaotic systems, concepts, and applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/7/4/10.1063/1.166278
1.
1.J.-C. Roux, R. H. Simoyi, and H. L. Swinney, “Observation of a strange attractor,” Physica D 8, 257266 (1983).
2.
2.T. Yamada and H. Fujisaka, “Stability theory of synchronized motion in coupled-oscillator systems. II,” Prog. Theor. Phys. 70, 1240 (1983).
3.
3.T. Yamada and H. Fujisaka, “Stability theory of synchronized motion in coupled-oscillator systems. III,” Prog. Theor. Phys. 72, 885 (1984).
4.
4.V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, “Stochastic synchronization of oscillations in dissipative systems,” Inv. VUZ Rasiofiz. RPQAEC 29, 795–803 (1986).
5.
5.T. L. Carroll and L. M. Pecora, “Synchronizing chaotic circuits,” IEEE Trans. CAS 38, 453 (1991).
6.
6.T. L. Carroll and L. M. Pecora, “Cascading synchronized chaotic systems,” Physica D 67, 126140 (1993).
7.
7.T. L. Carroll and L. M. Pecora, “Synchronizing nonautonomous chaotic circuits,” IEEE Trans. Circuits Syst. 40, 646 (1995).
8.
8.L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821 (1990).
9.
9.L. M. Pecora and T. L. Carroll, “Driving systems with chaotic signals,” Phys. Rev. A 44, 2374 (1991).
10.
10.J. F. Heagy, T. L. Carroll, and L. M. Pecora, “Synchronous chaos in coupled oscillator systems,” Phys. Rev. E 50, 1874 (1994).
11.
11.C. Tresser, P. A. Worfolk, and H. Bass, “Master-slave synchronization from the point of view of global dynamics,” Chaos 5, 693 (1995).
12.
12.L. M. Pecora and T. L. Carroll, “Pseudoperiodic driving: Eliminating multiple domains of attraction using chaos,” Phys. Rev. Lett. 67, 945 (1991).
13.
13.L. Pecora and T. Carroll, “Synchronized chaotic signals and systems,” SPIE 1992 Proceedings, San Diego CA (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1992), Vol. 1771, p. 389.
14.
14.E. N. Lorenz, “The local structure of a chaotic attractor in pour dimensions,” Physica D 13, 90 (1984).
15.
15.N. F. Rul’kov, A. R. Volkovskii, A. Rodriguez-Lozano et al., “Mutual synchronization of chaotic self-oscillators with dissipative coupling,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 669676 (1992).
16.
16.M. Rabinovich (private communication).
17.
17.V. S. Anishchenko, T. E. Vadivasova, D. E. Posnov et al., “Forced and mutual synchronization of chaos,” Sov. J. Commun. Technol. Electron. 36, 23 (1991).
18.
18.M. Ding and E. Ott, “Enhancing synchronism of chaotic systems,” Phys. Rev. E 49, R945 (1994).
19.
19.K. Pyragas, “Predictable chaos in slightly perturbed unpredictable chaotic systems,” Phys. Lett. A 181, 203 (1993).
20.
20.C. W. Wu and L. O. Chua, “A unified framework for synchronization and control of dynamical systems,” Int. J. Bifurcation Chaos 4, 979 (1994).
21.
21.J. F. Heagy, L. M. Pecora, and T. L. Carroll, “Short wavelength bifurcations and size instabilities in coupled oscillator systems,” Phys. Rev. Lett. 74, 4185 (1994).
22.
22.J. F. Heagy, T. L. Carroll, and L. M. Pecora, “Experimental and numerical evidence for riddled basins in coupled chaotic oscillators,” Phys. Rev. Lett. 73, 3528 (1995).
23.
23.K. Ogata, Control Engineering (Prentice–Hall, Englewood Cliffs, NJ, 1990).
24.
24.R. W. Newcomb and N. El-Leithy, “Chaos generation using binary hysteresis,” Circuits Syst. Signal Process. 5, 321 (1986).
25.
25.A. Tamasevicius, G. Mykolaitis, A. Cenys et al., “Synchronization of 4D hyperchaotic oscillators,” Electron. Lett. 32, 15361537 (1996).
26.
26.T. Carroll, “A simple circuit for demonstrating regular and synchronized chaos,” Am. J. Phys. 63, 377 (1995).
27.
27.K. Cuomo and A. V. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications,” Phys. Rev. Lett. 71, 65 (1993).
28.
28.K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, “Synchronization of Lorenz-based chaotic circuits with applications to communications,” IEEE Trans. Circuits Syst. 40, 626633 (1993).
29.
29.Lj. Kocarev, K. S. Halle, K. Eckert et al., “Experimental demonstration of secure communications via chaotic synchronization,” Int. J. Bifurcation Chaos 2, 709713 (1992).
30.
30.K. Murali and M. Lakshmanan, “Transmission of signals by synchronization in a chaotic Van der Pol–Duffing oscillator,” Phys. Rev. E 48, R1624 (1993).
31.
31.U. Parlitz, L. O. Chua, L. Kocarev et al., “Transmission of digital signals by chaotic synchronization,” Int. J. Bifurcation Chaos 2, 973977 (1992).
32.
32.R. H. Sherman and J. Gullicksen, “Chaotic communications in the presence of noise,” SPIE Conference on Chaos in Communications Proceedings (SPIE, Bellingham, WA, 1993), Vol. 2038, pp. 141–152.
33.
33.G. Pérez and H. A. Cerderia, “Extracting messages masked by chaos,” Phys. Rev. Lett. 74, 1970 (1995).
34.
34.K. M. Short, “Steps toward unmasking secure communications,” Int. J. Bifurcation Chaos 4, 959 (1994).
35.
35.A. H. MacDonals and M. Plischke, “Study of the driven damped pendulum: Application to Josephson Junctions and charge-density-wave systems,” Phys. Rev. B 27, 201 (1983).
36.
36.E. Brauer, S. Blochwitz, and H. Beige, “Periodic windows inside chaos—Experiment versus theory,” Int. J. Bifurcation Chaos 4, 10311039 (1993).
37.
37.S. Tankara, T. Matsumoto, and L. O. Chua, “Bifurcation scenario in a driven R-L-diode circuit,” Physica D 28, 317344 (1987).
38.
38.C. Grebogi, E. Ott, and J. A. Yorke, “Attractors on an -torus: Quasiperiodicity versus chaos,” Physica D 15, 354373 (1985).
39.
39.D. D’Humieres, M. R. Beasley, B. A. Huberman et al., “Chaotic states and routes to chaos in the forced pendulum,” Phys. Rev. A 26, 3483 (1982).
40.
40.J. Guemez, M. A. Matas et al., “Modified method for synchronizing and cascading chaotic systems,” Phys. Rev. E 52, 2145 (1995).
41.
41.R. E. Amritkar and Neelima Gupte, “Synchronization of chaotic orbits: The effect of a finite time step,” Phys. Rev. E 47, 3889 (1993).
42.
42.T. Stojanovski, L. Kocarev, and U. Parlitz, “Driving and synchronizing by chaotic impulses,” Phys. Rev. E 54, 21282131 (1996).
43.
43.T. Stojanovski, L. Kocarev, Urlich Parlitz et al., “Sporadic driving of dynamical systems,” Phys. Rev. E 55, 4035 (1997).
44.
44.T. L. Carroll, “Synchronizing chaotic systems using filtered signals,” Phys. Rev. E 50, 25802587 (1994).
45.
45.T. L. Carroll, “Communicating with use of filtered, synchronized chaotic signals,” IEEE Trans. Circuits Syst. 42, 105 (1995).
46.
46.L. Kocarev and U. Parlitz, “General approach for chaotic synchronization with applications to communication,” Phys. Rev. Lett. 74, 5028 (1995).
47.
47.T. L. Carroll, J. F. Heagy, and L. M. Pecora, “Transforming signals with chaotic synchronization,” Phys. Rev. E 54(5), 4676 (1996).
48.
48.W. L. Brogan, Modern Control Theory (Prentice–Hall, Englewood Cliffs, NJ, 1991).
49.
49.M. di Bernardo, “An adaptive approach to the control and synchronization of continuous-time chaotic systems,” Int. J. Bifurcation Chaos 6, 557568 (1996).
50.
50.M. di Bernardo, “A purely adaptive controller to synchronize and control chaotic systems,” Phys. Lett. A 214, 139 (1996).
51.
51.C.-C. Chen, “Direct chaotic dynamics to any desired orbits via a closed-loop control,” Phys. Lett. A 213, 148 (1996).
52.
52.G. Chen and D. Lai, “Feedback control of Lyapunov exponents for discrete-time dynamical systems,” Int. J. Bifurcation Chaos 6, 1341 (1996).
53.
53.J. H. Peng, E. J. Ding, M. Ding et al., “Synchronizing hyperchaos with a scalar transmitted signal,” Phys. Rev. Lett. 76, 904907 (1996).
54.
54.L. S. Tsimring and M. M. Sushchik, “Multiplexing chaotic signals using synchronization,” Phys. Lett. 213B, 155166 (1996).
55.
55.A. Cenys, A. Namajunas, A. Tamasevicius et al., “On–off intermittency in chaotic synchronization experiment,” Phys. Lett. A 213, 259 (1996).
56.
56.E. Ott and J. C. Sommerer, “Blowout bifurcations: The occurrence of riddled basins and on–off intermittency,” Phys. Lett. A 188, 3947 (1994).
57.
57.E. Ott, J. C. Sommerer, J. C. Alexander et al., “Scaling behavior of chaotic systems with riddled basins,” Phys. Rev. Lett. 71, 4134 (1993).
58.
58.F. Moon, Chaotic Vibrations (Wiley, New York, 1987).
59.
59.P. So, E. Ott, and W. P. Dayawansa, “Observing chaos: Deducing and tracking the state of a chaotic system from limited observation,” Phys. Lett. A 176, 421 (1993).
60.
60.E. Ott, C. Grebogi, and J. A. Yorke, “Controlling a chaotic system,” Phys. Rev. Lett. 64, 1196 (1990).
61.
61.R. Brown and P. Bryant, “Computing the Lyapunov spectrum of a dynamical system from an observed time series,” Phys. Rev. A 43, 2787 (1991).
62.
62.R. Brown, “Calculating Lyapunov exponents for short and/or noisy data sets,” Phys. Rev. E 47, 3962 (1993).
63.
63.R. Brown, N. F. Rul’kov, and N. B. Tufillaro, “The effects of additive noise and drift in the dynamics of the driving on chaotic synchronization,” preprint, 1994.
64.
64.R. Brown, N. F. Rul’kov, and N. B. Tufillaro, “Synchronization of chaotic systems. The effects of additive noise and drift in the dynamics of the driving,” preprint, 1994.
65.
65.U. Parlitz, “Estimating model parameters from time series by autosynchronization,” Phys. Rev. Lett. 76, 1232 (1996).
66.
66.J. F. Heagy and T. L. Carroll, “Chaotic synchronization in Hamiltonian systems,” Chaos 4, 385390 (1994).
67.
67.T. L. Carroll and L. M. Pecora, “Synchronizing hyperchaotic volume-preserving map circuits,” IEEE Trans. Circuits Syst. (in press).
68.
68.A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983).
69.
69.L. M. Pecora and T. L. Carroll, “Volume-preserving and volume expanding, synchronized chaotic systems,” Phys. Rev. E (in press).
70.
70.L. Kocarev, “Chaos synchronization of high-dimensional dynamical systems,” IEEE Trans. Circuits Syst. 42, 10091012 (1995).
71.
71.L. Kocarev, U. Parlitz, and T. Stojanovski, “An application of synchronized chaotic dynamic arrays,” Phys. Lett. A 217, 280284 (1996).
72.
72.R. Roy and K. Scott Thornburg Jr., “Experimental synchronization of chaotic lasers,” Phys. Rev. Lett. 72, 2009 (1994).
73.
73.P. Colet and R. Roy, “Digital communication with synchronized chaotic lasers,” Opt. Lett. 19, 2056 (1994).
74.
74.P. M. Alsing, A. Gavrielides, V. Kovanis et al., “Encoding and decoding messages with chaotic lasers,” Phys. Rev. E (in press).
75.
75.D. W. Peterman, M. Ye, and P. E. Wigen, “High frequency synchronization of chaos,” Phys. Rev. Lett. 74, 1740 (1995).
76.
76.N. Rul’kov, M. M. Sushchik, L. S. Tsimring et al., “Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E 51, 980 (1995).
77.
77.L. Pecora, T. Carroll, and J. Heagy, “Statistics for mathematical properties of maps between time-series embeddings,” Phys. Rev. E 52, 3420 (1995).
78.
78.L. M. Pecora, T. L. Carroll, and J. F. Heagy, “Statistics for continuity and differentiability: An application to attractor reconstruction from time series,” in Nonlinear Dynamics and Time Series: Building a Bridge Between the Natural and Statistical Sciences, Fields Institute Communications, edited by C. D. Cutler and D. T. Kaplan (American Mathematical Society, Providence, RI, 1996), Vol. 11, pp. 49–62.
79.
79.H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, “Generalized synchronization of chaos: The auxiliary system approach,” Phys. Rev. E 53, 4528 (1996).
80.
80.L. Kocarev and U. Parlitz, “Generalized synchronization, predictability and equivalence of unidirectionally coupled systems,” Phys. Rev. Lett. 76, 18161819 (1996).
81.
81.R. Badii, G. Broggi, B. Derighetti et al., “Dimension Increase in Filtered Chaotic Signals,” Phys. Rev. Lett. 60, 979 (1988).
82.
82.L. Pecora and T. Carroll, “Discontinuous and nondifferentiable functions and dimension increase induced by filtering chaotic data,” Chaos 6, 432439 (1996).
83.
83.K. M. Campbell and M. E. Davies, “The existence of inertial functions in skew product systems,” Nonlinearity 9, 801817 (1996).
84.
84.M. E. Davies and K. M. Campbell, “Linear recursive filters and nonlinear dynamics,” Nonlinearity 9, 487499 (1996).
85.
85.D. S. Broomhead, J. P. Huke, G. D. de Villiers et al., Report No. Appendix 10, Final Report to SRP, Assignment No. AS02 BP20, 1994.
86.
86.J. Stark and M. E. Davies, “Recursive filters driven by chaotic signals,” IEE Digest 143, 1–16 (1994).
87.
87.J. Stark (private communication).
88.
88.B. Hunt, E. Ott, and J. A. Yorke, “Differentiable generalized synchronization of chaos,” Phys. Rev. E 55, 4029 (1997).
89.
89.B. R. Hunt, E. Ott, and J. A. York, “Fractal dimensions of chaotic saddles of dynamical systems,” Phys. Rev. E 54(5), 4819 (1996).
90.
90.J. Stark, “Invariant graphs for forced systems,” Physica D (in press).
91.
91.B. Hunt (private communication).
92.
92.J. F. Heagy, N. Platt, and S. M. Hammel, “Characterization of on–off intermittency,” Phys. Rev. E 49, 1140 (1994).
93.
93.N. Platt, S. M. Hammel, and J. F. Heagy, “Effects of additive noise on on–off intermittency,” Phys. Rev. Lett. 72, 3498 (1994).
94.
94.J. F. Heagy, T. L. Carroll, and L. M. Pecora, “Desynchronization by periodic orbits,” Phys. Rev. E 52, R1253 (1995).
95.
95.R. Brown, “Synchronization of chaotic systems: Transverse stability of trajectories in invariant manifolds,” Chaos 7, 395 (1997).
96.
96.L. M. Pecora, T. L. Carroll, D. J. Gauthier et al., “Criteria which guarantee synchronization in coupled, chaotic systems” (in preparation).
97.
97.D. J. Gauthier and J. C. Bienfang, “Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization,” Phys. Rev. Lett. 77, 1751 (1996).
98.
98.P. Ashwin, J. Buescu, and I. Stewart, “From attractor to chaotic saddle: A tale of transverse instability,” Nonlinearity 9, 703737 (1994).
99.
99.S. C. Venkataramani, B. Hunt, and E. Ott, “The bubbling transition,” Phys. Rev. E 54, 13461360 (1996).
100.
100.T. Kapitaniak, “Monotone synchronization of chaos,” Int. J. Bifurcation Chaos 6, 211 (1996).
101.
101.A. Turing, Philos. Trans. B 237, 37 (1952).
102.
102.J. C. Alexander, J. A. Yorke, Z. You et al., “Riddled basins,” Int. J. Bifurcation Chaos 2, 795 (1992).
103.
103.I. Kan, “Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin,” Bull. Am. Math. Soc. 31, 68 (1994).
104.
104.E. Ott, J. C. Alexander, I. Kan et al., “The transition to chaotic attractors with riddled basins,” Physica D (in press).
105.
105.J. C. Sommerer and E. Ott, “A physical system with qualitatively uncertain dynamics,” Nature (London) 365, 138140 (1993).
106.
106.Y-C. Lai and R. L. Winslow, “Riddled parameter space in spatio-temporal chaotic dynamical systems,” Phys. Rev. Lett. 72, 1640 (1994).
107.
107.R. H. Parmenter and L. Y. Yu, “Riddled behavior of certain synchronized systems,” Phys. Lett. A 189, 181186 (1994).
108.
108.P. Ashwin, J. Buescu, and I. Stewart, “Bubbling of attractors and synchronization of chaotic oscillators,” Phys. Lett. A 193, 126139 (1994).
109.
109.E. Ott (private communication).
110.
110.C. Grebogi, E. Ott, and J. A. Yorke, “Crises, sudden changes in chaotic attractors and transient chaos,” Physica D 7, 181 (1983).
111.
111.T. L. Carroll, L. M. Pecora, and F. J. Rachford, “Chaotic transients and multiple attractors in spin-wave experiments,” Phys. Rev. Lett. 59, 2891 (1987).
112.
112.S. W. McDonald, C. Grebogi, E. Ott et al., “Fractal basin boundaries,” Physica D 17, 125 (1985).
113.
113.B.-S. Park, C. Grebogi, E. Ott et al., “Scaling of fractal basin boundaries near intermittency transitions to chaos,” Phys. Rev. A 40, 1576 (1989).
114.
114.L. M. Pecora, “Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems,” in preparation.
115.
115.L. M. Pecora, T. L. Carroll, G. Johnson et al., “Master stability function for synchronized coupled systems,” in preparation.
116.
116.T. Sauer and J. A. Yorke, “Are the dimensions of a set and its image equal under typical smooth functions?,” Ergodic Theory Dyn. Syst. (in press).
117.
117.S. Schiff, P. So, T. Chang et al., “Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble,” Phys. Rev. E 54, 67086724 (1996).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/7/4/10.1063/1.166278
Loading
/content/aip/journal/chaos/7/4/10.1063/1.166278
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/7/4/10.1063/1.166278
1997-12-01
2015-05-30
Loading

Full text loading...

true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Fundamentals of synchronization in chaotic systems, concepts, and applications
http://aip.metastore.ingenta.com/content/aip/journal/chaos/7/4/10.1063/1.166278
10.1063/1.166278
SEARCH_EXPAND_ITEM