1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Practical implementation of nonlinear time series methods: The TISEAN package
Rent:
Rent this article for
Access full text Article
/content/aip/journal/chaos/9/2/10.1063/1.166424
1.
1.The TISEAN software package is publicly available at The distribution includes an online documentation system.
2.
2.H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997).
3.
3.T. Schreiber, “Interdisciplinary application of nonlinear time series methods,” Phys. Rep. 308, 1 (1998).
4.
4.D. Kaplan and L. Glass, Understanding Nonlinear Dynamics (Springer-Verlag, New York, 1995).
5.
5.E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).
6.
6.P. Bergé, Y. Pomeau, and C. Vidal, Order Within Chaos: Towards a Deterministic Approach to Turbulence (Wiley, New York, 1986).
7.
7.H.-G. Schuster, Deterministic Chaos: An Introduction (Physik-Verlag, Weinheim, 1988).
8.
8.A. Katok and B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge, 1996).
9.
9.E. Ott, T. Sauer, and J. A. Yorke, Coping with Chaos (Wiley, New York, 1994).
10.
10.H. D. I. Abarbanel, Analysis of Observed Chaotic Data (Springer-Verlag, New York, 1996).
11.
11.P. Grassberger, T. Schreiber, and C. Schaffrath, “Non-linear time sequence analysis,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 1, 521 (1991).
12.
12.H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. Sh. Tsimring, “The analysis of observed chaotic data in physical systems,” Rev. Mod. Phys. 65, 1331 (1993).
13.
13.D. Kugiumtzis, B. Lillekjendlie, and N. Christophersen, “Chaotic time series I,” Modeling Identification Control 15, 205 (1994).
14.
14.D. Kugiumtzis, B. Lillekjendlie, and N. Christophersen, “Chaotic time series II,” Modeling Identification Control 15, 225 (1994).
15.
15.G. Mayer-Kress, in Dimensions and Entropies in Chaotic Systems (Springer-Verlag, Berlin, 1986).
16.
16.M. Casdagli and S. Eubank, in “Nonlinear modeling and forecasting,” Santa Fe Institute Studies in the Science of Complexity, Proceedings Vol. XII (Addison-Wesley, Reading, MA, 1992).
17.
17.A. S. Weigend and N. A. Gershenfeld, in “Time Series Prediction: Forecasting the future and understanding the past,” Santa Fe Institute Studies in the Science of Complexity, Proceedings Vol. XV (Addison-Wesley, Reading, MA, 1993).
18.
18.J. Bélair, L. Glass, U. an der Heiden, and J. Milton, in Dynamical Disease (AIP, Woodbury, NY, 1995).
19.
19.H. Kantz, J. Kurths, and G. Mayer-Kress, in Nonlinear Analysis of Physiological Data (Springer-Verlag, Berlin, 1998).
20.
20.T. Schreiber, “Efficient neighbor searching in nonlinear time series analysis,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 5, 349 (1995).
21.
21.F. Takens, Detecting Strange Attractors in Turbulence, Lecture Notes in Mathematics Vol. 898 (Springer-Verlag, New York, 1981), Vol. 898.
22.
22.T. Sauer, J. Yorke, and M. Casdagli, “Embedology,” J. Stat. Phys. 65, 579 (1991).
23.
23.M. Richter and T. Schreiber, “Phase space embedding of electrocardiograms,” Phys. Rev. E 58, 6392 (1998).
24.
24.M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, “State space reconstruction in the presence of noise,” Physica D 51, 52 (1991).
25.
25.A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Phys. Rev. A 33, 1134 (1986).
26.
26.B. Pompe, “Measuring statistical dependences in a time series,” J. Stat. Phys. 73, 587 (1993).
27.
27.M. Paluš, “Testing for nonlinearity using redundancies: Quantitative and qualitative aspects,” Physica D 80, 186 (1995).
28.
28.M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Phys. Rev. A 45, 3403 (1992).
29.
29.http://hpux.cs.utah.edu/hppd/hpux/Physics/embedding-26.May.93
30.
30.http://www.zweb.com/apnonlin/
31.
31.I. T. Jolliffe, Principal Component Analysis (Springer-Verlag, New York, 1986).
32.
32.D. Broomhead and G. P. King, “Extracting qualitative dynamics from experimental data,” Physica D 20, 217 (1986).
33.
33.W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd ed. (Cambridge University Press, Cambridge, 1992).
34.
34.R. Vautard, P. Yiou, and M. Ghil, “Singular-spectrum analysis: a toolkit for short, noisy chaotic signals,” Physica D 58, 95 (1992).
35.
35.A. Varone, A. Politi, and M. Ciofini, “ laser with feedback,” Phys. Rev. A 52, 3176 (1995).
36.
36.R. Hegger and H. Kantz, “Embedding of sequences of time intervals,” Europhys. Lett. 38, 267 (1997).
37.
37.J. P. Eckmann, S. Oliffson Kamphorst, and D. Ruelle, “Recurrence plots of dynamical systems,” Europhys. Lett. 4, 973 (1987).
38.
38.M. Casdagli, “Recurrence plots revisited,” Physica D 108, 206 (1997).
39.
39.N. B. Tufillaro, P. Wyckoff, R. Brown, T. Schreiber, and T. Molteno, “Topological time series analysis of a string experiment and its synchronized model,” Phys. Rev. E 51, 164 (1995).
40.
40.
41.
41.A. Provenzale, L. A. Smith, R. Vio, and G. Murante, “Distinguishing between low-dimensional dynamics and randomness in measured time series,” Physica D 58, 31 (1992).
42.
42.H. Tong, Threshold Models in Non-Linear Time Series Analysis, Lecture Notes in Statistics (Springer-Verlag, New York, 1983), Vol. 21.
43.
43.A. Pikovsky, “Discrete-time dynamic noise filtering,” Sov. J. Commun. Technol. Electron. 31, 81 (1986).
44.
44.G. Sugihara and R. May, “Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series,” Nature (London) 344, 734 (1990); reprinted in Ref. 9.
45.
45.J.-P. Eckmann, S. Oliffson Kamphorst, D. Ruelle, and S. Ciliberto, “Lyapunov exponents from a time series,” Phys. Rev. A 34, 4971 (1986); reprinted in Ref. 9.
46.
46.J. D. Farmer and J. Sidorowich, “Predicting chaotic time series,” Phys. Rev. Lett. 59, 845 (1987); reprinted in Ref. 9.
47.
47.D. Auerbach, P. Cvitanović, J.-P. Eckmann, G. Gunaratne, and I. Procaccia, “Exploring chaotic motion through periodic orbits,” Phys. Rev. Lett. 58, 2387 (1987).
48.
48.O. Biham and W. Wenzel, “Characterization of unstable periodic orbits in chaotic attractors and repellers,” Phys. Rev. Lett. 63, 819 (1989).
49.
49.P. So, E. Ott, S. J. Schiff, D. T. Kaplan, T. Sauer, and C. Grebogi, “Detecting unstable periodic orbits in chaotic experimental data,” Phys. Rev. Lett. 76, 4705 (1996).
50.
50.P. Schmelcher and F. K. Diakonos, “A general approach to the finding of unstable periodic orbits in chaotic dynamical systems,” Phys. Rev. E 57, 2739 (1998).
51.
51.D. Kugiumtzis, O. C. Lingjærde, and N. Christophersen, “Regularized local linear prediction of chaotic time series,” Physica D 112, 344 (1998).
52.
52.L. Jaeger and H. Kantz, “Unbiased reconstruction of the dynamics underlying a noisy chaotic time series,” Chaos 6, 440 (1996).
53.
53.M. Casdagli, “Chaos and deterministic versus stochastic nonlinear modeling,” J. R. Statist. Soc. B 54, 303 (1991).
54.
54.D. Broomhead and D. Lowe, “Multivariable functional interpolation and adaptive networks,” Complex Syst. 2, 321 (1988).
55.
55.L. A. Smith, “Identification and prediction of low dimensional dynamics,” Physica D 58, 50 (1992).
56.
56.M. Casdagli, “Nonlinear prediction of chaotic time series,” Physica D 35, 335 (1989);
56.reprinted in Ref. 9.
57.
57.E. J. Kostelich and T. Schreiber, “Noise reduction in chaotic time series data: A survey of common methods,” Phys. Rev. E 48, 1752 (1993).
58.
58.M. E. Davies, “Noise reduction schemes for chaotic time series,” Physica D 79, 174 (1994).
59.
59.T. Schreiber, “Extremely simple nonlinear noise reduction method,” Phys. Rev. E 47, 2401 (1993).
60.
60.D. R. Rigney, A. L. Goldberger, W. Ocasio, Y. Ichimaru, G. B. Moody, and R. Mark, “Multi-channel physiological data: Description and analysis (Data set B),” in Ref. 17.
61.
61.P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath, and T. Schreiber, “On noise reduction methods for chaotic data,” Chaos 3, 127 (1993);
61.reprinted in Ref. 9.
62.
62.H. Kantz, T. Schreiber, I. Hoffmann, T. Buzug, G. Pfister, L. G. Flepp, J. Simonet, R. Badii, and E. Brun, “Nonlinear noise reduction: a case study on experimental data,” Phys. Rev. E 48, 1529 (1993).
63.
63.M. Finardi, L. Flepp, J. Parisi, R. Holzner, R. Badii, and E. Brun, “Topological and metric analysis of heteroclinic crises in laser chaos,” Phys. Rev. Lett. 68, 2989 (1992).
64.
64.A. I. Mees and K. Judd, “Dangers of geometric filtering,” Physica D 68, 427 (1993).
65.
65.T. Schreiber and M. Richter, “Nonlinear projective filtering in a data stream,” Wuppertal preprint, 1998.
66.
66.M. Richter, T. Schreiber, and D. T. Kaplan, “Fetal ECG extraction with nonlinear phase space projections,” IEEE Trans. Biomed. Eng. 45, 133 (1998).
67.
67.J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,” Rev. Mod. Phys. 57, 617 (1985).
68.
68.R. Stoop and J. Parisi, “Calculation of Lyapunov exponents avoiding spurious elements,” Physica D 50, 89 (1991).
69.
69.H. Kantz, “A robust method to estimate the maximal Lyapunov exponent of a time series,” Phys. Lett. A 185, 77 (1994).
70.
70.M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D 65, 117 (1993).
71.
71.M. Sano and Y. Sawada, “Measurement of the Lyapunov spectrum from a chaotic time series,” Phys. Rev. Lett. 55, 1082 (1985).
72.
72.J. Kaplan and J. Yorke, “Chaotic behavior of multidimensional difference equations,” in Functional Differential Equations and Approximation of Fixed Points, edited by H. O. Peitgen and H. O. Walther (Springer-Verlag, New York, 1987).
73.
73.P. Grassberger and I. Procaccia, Physica D 9, 189 (1983).
74.
74.T. Sauer and J. Yorke, “How many delay coordinates do you need?,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 3, 737 (1993).
75.
75.J. Theiler, J. Opt. Soc. Am. A 7, 1055 (1990).
76.
76.H. Kantz and T. Schreiber, Chaos 5, 143 (1995);
76.reprinted in Ref. 18.
77.
77.P. Grassberger, “Finite sample corrections to entropy and dimension estimates,” Phys. Lett. A 128, 369 (1988).
78.
78.F. Takens, in Dynamical Systems and Bifurcations, edited by B. L. J. Braaksma, H. W. Broer, and F. Takens, Lecture Notes in Mathematics (Springer-Verlag, Heidelberg, 1985), Vol. 1125.
79.
79.J. Theiler, “Lacunarity in a best estimator of fractal dimension,” Phys. Lett. A 135, 195 (1988).
80.
80.J. M. Ghez and S. Vaienti, “Integrated wavelets on fractal sets I: The correlation dimension,” Nonlinearity 5, 777 (1992).
81.
81.R. Badii and A. Politi, “Statistical description of chaotic attractors,” J. Stat. Phys. 40, 725 (1985).
82.
82.J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, “Testing for nonlinearity in time series: The method of surrogate data,” Physica D 58, 77 (1992);
82.reprinted in Ref. 9.
83.
83.T. Schreiber and A. Schmitz, “Improved surrogate data for nonlinearity tests,” Phys. Rev. Lett. 77, 635 (1996).
84.
84.J. Theiler, P. S. Linsay, and D. M. Rubin, “Detecting nonlinearity in data with long coherence times,” in Ref. 17.
85.
85.T. Schreiber, “Constrained randomization of time series data,” Phys. Rev. Lett. 80, 2105 (1998).
86.
86.T. Subba Rao and M. M. Gabr, An Introduction to Bispectral Analysis and Bilinear Time Series Models, Lecture Notes in Statistics (Springer-Verlag, New York, 1984), Vol. 24.
87.
87.C. Diks, J. C. van Houwelingen, F. Takens, and J. DeGoede, “Reversibility as a criterion for discriminating time series,” Phys. Lett. A 201, 221 (1995).
88.
88.T. Schreiber and A. Schmitz, “Discrimination power of measures for nonlinearity in a time series,” Phys. Rev. E 55, 5443 (1997).
89.
89.J. Kadtke, “Classification of highly noisy signals using global dynamical models,” Phys. Lett. A 203, 196 (1995).
90.
90.R. Manuca and R. Savit, “Stationarity and nonstationarity in time series analysis,” Physica D 99, 134 (1996).
91.
91.M. C. Casdagli, L. D. Iasemidis, R. S. Savit, R. L. Gilmore, S. Roper, and J. C. Sackellares, “Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy,” Electroencephalogr. Clin. Neurophysiol. 102, 98 (1997).
92.
92.T. Schreiber, “Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions,” Phys. Rev. Lett. 78, 843 (1997).
http://aip.metastore.ingenta.com/content/aip/journal/chaos/9/2/10.1063/1.166424
Loading
/content/aip/journal/chaos/9/2/10.1063/1.166424
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/chaos/9/2/10.1063/1.166424
1999-06-01
2015-05-30
Loading

Full text loading...

true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Practical implementation of nonlinear time series methods: The TISEAN package
http://aip.metastore.ingenta.com/content/aip/journal/chaos/9/2/10.1063/1.166424
10.1063/1.166424
SEARCH_EXPAND_ITEM