1887

Computers in Physics

No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Higher-order variable-step algorithms adapted to the accurate numerical integration of perturbed oscillators
Rent:
Rent this article for
Access full text Article
/content/aip/journal/cip/12/5/10.1063/1.168717
1.
1.E. L. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics (Springer, Berlin, 1971).
2.
2.J. M. Ferrándiz, Celest. Mech. 41, 343 (1988).
3.
3.A. Deprit, A. Elipe, and S. Ferrer, Celest. Mech. Dyn. Astron. 58, 151 (1994).
4.
4.E. Stiefel and D. G. Bettis, Numer. Math. 13, 154 (1969).
5.
5.D. G. Bettis, Numer. Math. 14, 421 (1970).
6.
6.J. Vigo and J. M. Ferrándiz, Implementation of the Bettis algorithms for the numerical integration of perturbed oscillating systems, in Computational Physics, edited by P. L. Gardio and J. Marro (World Scientific, London, 1993), p. 349.
7.
7.T. Lyche, Numer. Math. 19, 65 (1972).
8.
8.M. Palacios and J. M. Franco, Numerical integration for orbital problems, in Proceedings Mecanique Spatiale, Toulouse, France, 1990, p. 561.
9.
9.P. Martín and J. M. Ferrándiz, SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 34, 359 (1997).
10.
10.D. L. Richardson and J. Vigo, Adv. Astron. Sci.89, 1525 (1995).
11.
11.J. Vigo-Aguiar, doctoral dissertation, University of Valladolid, 1993 (Spanish language, available from the author).
12.
12.J. Vigo-Aguiar and J. M. Ferrándiz, SIAM J. Num. Anal. 35, 4 (1998).
13.
13.P. Deuflhard, Z. Angew. Math. Phys. 30, 177 (1979).
14.
14.P. Deuflhard, Celest. Mech. 21, 213 (1980).
15.
15.G. Denk, Appl. Numer. Math. 13, 57 (1993).
16.
16.L. Ixaru, G. Vanden Berghe, H. De Meyer, and M. Van Daele, Comput. Phys. Commun. 100, 56 (1997).
17.
17.T. E. Simos, Int. J. Mod. Phys. C 7, 825 (1996).
18.
18.T. E. Simos and G. Tougelidis, Comput. Mater. Sci. 8, 317 (1997).
19.
19.T. E. Simos, Int. J. Theor. Phys. 36, 663 (1997).
20.
20.T. E. Simos and Ch. Tsitouras, J. Comput. Phys. 130, 123 (1997).
21.
21.T. E. Simos, IMA J. Numer. Anal. 11, 347 (1991).
22.
22.T. E. Simos and A. D. Raptis, J. Comput. Appl. Math. 43, 313 (1992).
23.
23.G. Scheifele, Z. Angew. Math. Phys. 22, 186 (1971).
24.
24.V. Fairen, P. Martín, and J. M. Ferrándiz, Comput. Phys. 8, 455 (1994).
25.
25.L. M. Milne-Thomson, The Calculus of Finite Differences (Macmillan, New York, 1981).
26.
26.J. D. Lambert, Numerical Methods for Ordinary Differential Systems (Wiley, New York, 1991).
27.
27.R. D. Grigorieff, Numer. Math. 42, 359 (1983).
28.
28.H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations (Springer, Berlin, 1973).
29.
29.V. Szebehely, Theory of Orbits (Academic, Orlando, FL, 1967).
30.
30.W. H. Press et al., Numerical Recipes in Fortran (Cambridge University Press, Cambridge, 1992).
31.
31.H. Yoshida, Phys. Lett. A 150, 262 (1995).
http://aip.metastore.ingenta.com/content/aip/journal/cip/12/5/10.1063/1.168717
Loading
/content/aip/journal/cip/12/5/10.1063/1.168717
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/cip/12/5/10.1063/1.168717
1998-09-01
2014-09-19
Loading

Full text loading...

Most read this month

Article
content/aip/journal/cip
Journal
5
3
Loading

Most cited this month

true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Higher-order variable-step algorithms adapted to the accurate numerical integration of perturbed oscillators
http://aip.metastore.ingenta.com/content/aip/journal/cip/12/5/10.1063/1.168717
10.1063/1.168717
SEARCH_EXPAND_ITEM