Skip to main content

Computers in Physics

No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/cip/12/5/10.1063/1.168726
1.
1.P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).
2.
2.P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).
3.
3.M. R. Wilson, “Molecular dynamics simulations of flexible liquid crystal molecules using a Gay–Berne/Lennard-Jones model,” J. Chem. 107, 8654 (1997).
4.
4.S. C. McGrother, A. Gil-Villegas, and G. Jackson, “The liquid-crystalline phase behavior of hard spherocylinders with terminal point dipoles,” J. Phys.: Condens. Matter 8, 9649 (1996);
4.S. C. McGrother, A. Gil-Villegas, and G. Jackson, “Chain and ring structures in smectic phases of molecules with transverse dipoles,” Chem. Phys. Lett. 269, 441 (1997).
5.
5.P. A. Lebwohl and G. Lasher, “Nematic-Liquid-Crystal Order—A Monte Carlo calculation,” Phys. Rev. A 6, 426 (1972).
6.
6.D. Frenkel, Phase Transitions in Liquid Crystals, edited by S. Martellucci and A. N. Chester (Plenum, New York, 1992).
7.
7.J. G. Gay and B. J. Berne, “Modification of the overlap potential to mimic a linear site-site potential,” J. Chem. Phys. 74, 3316 (1981).
8.
8.E. De Miguel, L. P. Rull, M. K. Chalam, and K. E. Gubbins, “Liquid crystal phase diagram of the Gay–Berne fluid,” Mol. Phys. 74, 405 (1991).
9.
9.H. Zewdie, “Computer-simulation studies of diskotic liquid crystals,” Phys. Rev. E 57, 1793 (1998).
10.
10.M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1987).
11.
11.A. Bulgac and M. Adamuţi-Trache, “Molecular dynamics of rigid molecules,” J. Chem. Phys. 105, 1131 (1996).
12.
12.H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1980).
13.
13.G. R. Luckhurst, R. A. Stephens, and R. W. Phippen, “Computer simulation studies of anisotropic systems XIX. Mesophases formed by the Gay–Berne model mesogen,” Liq. Cryst. 8, 451 (1990).
14.
14.In the interests of clarity, we have modified the notation somewhat from what is common in the research literature.
15.
15.M. Svanberg, “An improved leap-frog rotational algorithm,” Mol. Phys. 92, 1085 (1997).
16.
16.M. P. Allen, “Simulations using hard particles,” Philos. Trans. R. Soc. London, Ser. A 344, 323 (1993).
17.
17.R. Memmer, H.-G. Kuball, and A. Schönhofer, “Computer simulation of chiral liquid crystal phases III. A cholesteric phase formed by chiral Gay–Berne atropisomers,” Mol. Phys. 89, 1633 (1996).
18.
18.Z. P. Zhang, A. Chakrabarti, O. G. Mouritsen, and M. J. Zuckerman, “Substrate-induced bulk alignment of liquid crystals,” Phys. Rev. E 53, 5 (1996).
http://aip.metastore.ingenta.com/content/aip/journal/cip/12/5/10.1063/1.168726
Loading
/content/aip/journal/cip/12/5/10.1063/1.168726
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/cip/12/5/10.1063/1.168726
1998-09-01
2016-09-28
Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=scitation.aip.org/12/5/10.1063/1.168726&pageURL=http://scitation.aip.org/content/aip/journal/cip/12/5/10.1063/1.168726'
Right1,Right2,Right3,