Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/100/5/10.1063/1.2336999
1.
1.D. W. Chapman, J. Appl. Phys. 40, 2381 (1969).
http://dx.doi.org/10.1063/1.1657999
2.
2.M. H. Francombe, Thin Solid Films 13, 243 (1972).
3.
3.B. S. Sharma, S. F. Vogel, and P. I. Prentky, Ferroelectrics 5, 69 (1973).
4.
4.J. B. Blum and S. R. Gurkowich, J. Mater. Sci. 20, 4479 (1985).
http://dx.doi.org/10.1007/BF00559337
5.
5.K. D. Budd, S. K. Dey, and D. A. Payne, Br. Ceram. Proc. 36, 107 (1988).
6.
6.S. S. Eaton, D. B. Butler, M. Parris, D. Wilson, and H. McNeillie, Dig. Tech. Pap.-IEEE Int. Solid-State Circuits Conf. 130, 329 (1988).
7.
7.C. P. de Araujo, G. W. Taylor, and J. F. Scott, in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by C Paz de Araujo, G. W. Taylor, and J. F. Scott (Gordon and Breach, Amsterdam, 1996).
8.
8.R. Ramesh, in Thin Film Ferroelectric Materials and Devices, edited by R. Ramesh (Kluwer Academinc, Dordrecht, 1997).
9.
9.N. Setter, Electroceramic Based MEMS (Springer, New York, 2005).
10.
10.J. F. Scott and C. A. P. de Araujo, Science 246, 1400 (1989).
11.
11.M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.1083
12.
12.A. Kingon, P. Muralt, N. Setter, and R. Waser, Ceramic Materials for Electronics, edited by R. E. Buchanan (Dekker, New York, 2004), pp. 465526.
13.
13.P. Muralt, J. Micromech. Microeng. 10, 136 (2000).
http://dx.doi.org/10.1088/0960-1317/10/2/307
15.
15.T. Maeder, P. Muralt, M. Kohli, A. Kholkin, and N. Setter, Br. Ceram. Proc. 54, 206 (1995).
16.
16.P. Muralt, J. Baborowski, and N. Ledermann, in Piezoelectric Materials in Devices, edited by N. Setter (Ceramics Laboratory, EPFL, Lausanne, Switzerland, 2002), Chap. 12, pp. 231260.
17.
17.A. M. Flynn, L. S. Tavrow, S. F. Bart, R. A. Brooks, D. J. Ehrlich, K. R. Udayakumar, and L. E. Cross, J. Microelectromech. Syst. 1, 44 (1992).
http://dx.doi.org/10.1109/84.128055
18.
18.M. A. Dubois and P. Muralt, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1169 (1998).
http://dx.doi.org/10.1109/58.726440
19.
19.P. Luginbuhl, S. D. Collins, G. A. Racine, M. A. Grétillat, N. F. de Rooij, K. G. Brooks, and N. Setter, J. Microelectromech. Syst. 6, 337 (1997).
http://dx.doi.org/10.1109/84.650131
20.
20.Y. Nemirovsky, A. Nemirovsky, P. Muralt, and N. Setter, Sens. Actuators, A 56, 239 (1996).
http://dx.doi.org/10.1016/S0924-4247(96)01324-6
21.
21.N. Ledermann, J. Baborowski, A. Seifert, B. Willing, S. Hiboux, P. Muralt, N. Setter, and M. Forster, Integr. Ferroelectr. 35, 177 (2001).
22.
22.T. Fujii and S. Watanabe, Appl. Phys. Lett. 68, 467 (1996).
http://dx.doi.org/10.1063/1.116415
23.
23.J. Y. Park, Y. J. Yee, H. J. Nam, and J. U. Bu, IEEE MTT-S Int. Microwave Symp. Dig. 2001, 2111.
24.
24.J. Baborowski, N. Ledermann, P. Muralt, and D. Schmitt, Int. J. Comput. Eng. Sci. 4, 471 (2003).
25.
25.J. J. Bernstein et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 960 (1997).
http://dx.doi.org/10.1109/58.655620
26.
26.T. Yoshimura and S. Trolier-McKinstry, J. Appl. Phys. 92, 3979 (2002).
http://dx.doi.org/10.1063/1.1505997
27.
27.Z. Kighelman, D. Damjanovic, and N. Setter, J. Appl. Phys. 90, 4682 (2001).
http://dx.doi.org/10.1063/1.1409573
28.
28.S. Bühlmann, B. Dwir, J. Baborowski, and P. Muralt, Appl. Phys. Lett. 80, 3195 (2002).
http://dx.doi.org/10.1063/1.1475369
29.
29.N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, Sens. Actuators, A 105, 162 (2003).
http://dx.doi.org/10.1016/S0924-4247(03)00090-6
30.
30.J. Quyang, R. Ramesh, and A. L. Roytburd, Appl. Phys. Lett. 86, 152901 (2005).
http://dx.doi.org/10.1063/1.1899252
31.
31.R. Maeda, T. T. Tsaur, S. H. Lee, and M. Ichicki, in Electroceramic Based MEMS, editer by N. Setter (Springer, New York, 2005), Chap. 2, pp. 1936.
32.
32.S. J. Gross, S. Tadigadapa, T. N. Jackson, S. Trolier-McKinstry, and Q. Q. Zhang, Appl. Phys. Lett. 83, 1 (2003).
http://dx.doi.org/10.1063/1.1589163
33.
33.Y. S. Kim, C. S. Lee, W. H. Jin, S. S. Jang, H. J. Nam, and J. U. Bu, Sens. Mater. 17, 57 (2005).
34.
34.P. V. M. Despont et al., IBM J. Res. Dev. 44, 323 (2000).
35.
35.P. Muralt, in Electroceramic Based MEMS, edited by N. Setter (Springer, New York, 2005), Chap. 3, pp. 3748.
36.
36.J. Baborowski, Electroceramic Based MEMS, edited by N. Setter (Springer, New York, 2005), Chap. 13, pp. 325360.
37.
37.G. Percin and B. T. Khuri-Yakub, Rev. Sci. Instrum. 73, 2193 (2002).
http://dx.doi.org/10.1063/1.1468684
38.
38.K. Yamashita et al., Sens. Actuators, A 97, 302 (2002).
39.
39.K. M. Lakin and J. S. Wang, Appl. Phys. Lett. 38, 125 (1981).
http://dx.doi.org/10.1063/1.92298
40.
40.K. M. Lakin, G. R. Kline, and K. T. McCarron, IEEE Trans. Microwave Theory Tech. 43, 2933 (1995).
http://dx.doi.org/10.1109/22.475658
41.
41.P. Muralt and R. Lanz, in Piezoelectric Materials in Devices, edited by N. Setter (Ceramics Laboratory, EPFL, Lausanne, Switzerland, 2002), Chap. 15, pp. 303314.
42.
42.N. Ylilammi, J. Ella, M. Partanen, and J. Kaitila, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 535 (2002).
http://dx.doi.org/10.1109/58.996574
43.
43.F. Martin, P. Muralt, and M. A. Dubois, J. Vac. Sci. Technol. A 22, 361 (2004).
http://dx.doi.org/10.1116/1.1649343
44.
44.A. Ballato, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41, 834 (1994).
45.
45.M. A. Dubois and P. Muralt, Appl. Phys. Lett. 74, 3032 (1999).
http://dx.doi.org/10.1063/1.124055
46.
46.J. Kaitila, M. Yililammi, J. Molaris, J. Ellä, and T. Makkonen, Proc.-IEEE Ultrason. Symp. 803 (2001).
47.
47.P. Muralt and R. Lanz, in Piezoelectric Materials in Devices, edited by N. Setter (Ceramics Laboratory, EPFL, Lausanne, Switzerland, 2002), Chap. 15, p. 312.
49.
49.H. P. Loebl, C. Metzmacher, R. F. Milsom, P. Lok, and A. Tuinhout, in Electroceramic Based MEMS, edited by N. Setter (Springer, New York, 2005), Chap. 6, p. 115.
50.
50.S. Gevorgian, in Electroceramic-Based MEMS, edited by N. Setter (Springer, New York, 2005), Chap. 7, p. 133.
51.
51.A. Vorobiev, P. Rundqvist, K. Khamchane, and S. Gevorgian, Appl. Phys. Lett. 83, 3144 (2003).
http://dx.doi.org/10.1063/1.1619213
52.
52.V. E. Demidov, B. A. Kalinikos, S. F. Karmanenko, A. A. Semenov, and P. Edenhofer, IEEE Trans. Microwave Theory Tech. 51, 2090 (2003).
http://dx.doi.org/10.1109/TMTT.2003.817461
53.
53.Q. X. Jia, J. R. Groves, P. Arendt, Y. Fan, A. T. Findikoglu, S. R. Foltyn, H. Jiang, and F. A. Miranda, Appl. Phys. Lett. 74, 1564 (1999).
http://dx.doi.org/10.1063/1.123617
54.
54.S. Gevorgian, S. Abadei, H. Berg, and H. Jacobsson, IEEE MTT-S Int. Microwave Symp. Dig. 2, 1195 (2001).
55.
55.H. H. Fiallo, J. P. Dougherty, S. J. Jang, R. E. Newnham, and L. A. Carpenter, IEEE Trans. Microwave Theory Tech. 42, 1176 (1994).
56.
56.S. Gevorgian and E. Kollberg, IEEE Trans. Microwave Theory Tech. 49, 2117 (2001).
http://dx.doi.org/10.1109/22.963146
57.
57.S. Gevorgian, IEEE International Microwave Symposium Workshop on Ferroeletric Materials and Devices for Microwave Applications, Philadelphia, 2003 (unpublished).
58.
58.V. V. Lemanov, A. V. Sotnikov, E. P. Smirnova, M. Weihnacht, and R. Kunze, Solid State Commun. 110, 611 (1999).
http://dx.doi.org/10.1016/S0038-1098(99)00153-2
59.
59.E. Kollberg, J. Stake, and L. Dillner, Philos. Trans. R. Soc. London, Ser. A 354, 2383 (1996).
62.
62.S. Gevorgian, P. K. Petrov, Z. Ivanov, and E. Wikborg, Appl. Phys. Lett. 79, 1861 (2001).
http://dx.doi.org/10.1063/1.1402637
63.
63.S. Gevorgian, H. Jacobsson, and T. Lewin, U.S. Patent Application No. PCT/SE 2004/00329 (2004).
64.
64.O. G. Vendik and S. P. Zubko, J. Appl. Phys. 82, 4475 (1997).
http://dx.doi.org/10.1063/1.366180
65.
65.Ferroelectric Random Access Memories, of Topics in Applied Physics, vol. 93, edited by H. Ishiwara and M. Okuyama (Springer-Verlag, Berlin, 2004).
66.
66.J. F. Scott, Ferroelectric Memories, Springer Series in Advanced Microelectronics (Springer-Verlag, Berlin, 2000).
67.
67.J. Evans and R. Womack, IEEE J. Solid-State Circuits 23, 1171 (1988).
http://dx.doi.org/10.1109/4.5940
68.
68.R. Womack and D. Tolsch, Dig. Tech. Pap.-IEEE Int. Solid-State Circuits Conf. 1989, p. 242.
69.
69.C. A. P. de Araujo, J. D. Cuchiaro, L. D. MacMillan, M. C. Scott, and J. F. Scott, Nature (London) 374, 627 (1995).
http://dx.doi.org/10.1038/374627a0
70.
70.T. Sumi et al., Dig. Tech. Pap.-IEEE Int. Solid-State Circuits Conf. 1994, p. 268.
71.
71.E. Choi et al., Integr. Ferroelectr. 66, 107 (2004).
72.
72.S. Sinharoy, H. Buhay, D. R. Lampe, and M. H. Francombe, J. Vac. Sci. Technol. A 10, 1554 (1992).
http://dx.doi.org/10.1116/1.578044
73.
73.H. Volz, K. Koger, and H. Schmitt, Ferroelectrics 56, 161 (1984).
74.
74.T. Hayashi et al., Tech. Dig. - Int. Electron Devices Meet. 2002.
75.
75.H. Kim, S. Yamamoto, and H. Ishiwara, Integr. Ferroelectr. 67, 271 (2004).
76.
76.F. Chu, G. Fox, and T. Davenport, Integr. Ferroelectr. 36, 43 (2001).
77.
77.F. Chu, G. Fox, T. Davenport, Y. Miyaguchi, and K. Suu, Integr. Ferroelectr. 48, 161 (2002).
78.
78.A. Itoh et al., Proc. IEEE VLSI Tech. Symposium, 2000.
79.
79.W. Kraus, L. Lehman, D. Wilson, T. Yamasaki, C. Ohno, E. Nagai, H. Yamazaki, and H. Suziki, Symp. VLSI Circuits, 1998, p. 242.
80.
80.G. R. Fox and S. Summerfelt, in Magnetic and Electronic Films -Microstructure, Texture and Application to Data Storage, edited by P. W. DeHaven, D. P. Field, S. D. Harkness, J. A. Sutliff, J. A. Szpunar, L. Tang, T. Thomson, and V. D. Vaudin (Materials Research Society, Pittsburgh, PA, 2002), p. 145.
81.
81.E. Fujii and K. Uchiyama, Integr. Ferroelectr. 53, 317 (2003).
82.
82.Y. Horii et al., Tech. Dig. - Int. Electron Devices Meet. 2002, p. 539.
83.
83.H. J. Joo et al., Integr. Ferroelectr. 68, 139 (2004).
84.
84.T. S. Moise et al., Tech. Dig. - Int. Electron Devices Meet. 1999, p. 940.
85.
85.D. Takashima and Y. Oowaki, Ferroelectric Random Access Memories, Topics in Applied Physics Vol. 93, (Springer-Verlag, Berlin, 2004), p. 198.
86.
86.H. McAdams et al., IEEE J. Solid-State Circuits 39, 1 (2004).
87.
87.T. S. Moise et al., Tech. Dig. - Int. Electron Devices Meet. 2002, p. 535.
88.
88.J. A. Rodriguez et al., IEEE Trans. Device Mater. Reliab. 4, 436 (2004).
89.
89.Y. Arimoto and H. Ishiwara, MRS Bull. 29, 823 (2004).
90.
90.H. Ishiwara, Mater. Res. Soc. Symp. Proc. 596, 427 (2000).
91.
91.H. Kohlstedt and H. Ishiwara, in Nanoelectronics and Information Technology: Advanced Electronic Materrial and Novel Devices, edited by R. Waser (Wiley-VCH, Weinheim, 2002), Chap. 14, p. 387.
92.
92.I. M. Ross, U.S. Patent No. 2,791,760 (1957).
93.
93.J. L. Moll and Y. Tarui, IEEE Trans. Electron Devices ED-10, 338 (1963).
94.
94.S. Y. Wu, IEEE Trans. Electron Devices ED-21, 499 (1974).
95.
95.K. Takahashi, K. Manabe, A. Morioka, T. Ikarashi, T. Yoshihara, H. Watanabe, and T. Tatsumi, Abstracts of the International Conference Solid State Devices and Materials, Tokyo, 2004 (unpublished), Paper No. 1–2..
96.
96.S. A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani, and K. Eisenbeiser, Appl. Phys. Lett. 77, 1662 (2000).
http://dx.doi.org/10.1063/1.1310209
97.
97.C. J. Förster, C. R. Ashman, K. Schwarz, and P. E. Blöchl, Nature (London) 427, 53 (2004).
http://dx.doi.org/10.1038/nature02204
98.
98.R. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3014
99.
99.I. P. Batra, P. Würfel, and B. D. Silverman, Phys. Rev. Lett. 30, 384 (1973).
http://dx.doi.org/10.1103/PhysRevLett.30.384
100.
100.R. R. Metha, B. D. Siverman, and J. T. Jacobs, J. Appl. Phys. 44, 3379 (1973).
http://dx.doi.org/10.1063/1.1662770
101.
101.T. Furukawa, Phase Transitions 18, 143 (1989).
102.
102.S. H. Lim, A. C. Rastogi, and S. B. Desu, J. Appl. Phys. 96, 5673 (2004).
http://dx.doi.org/10.1063/1.1785836
103.
103.T. J. Reece, A. Ducharme, A. V. Sorokin, and M. Poulsen, Appl. Phys. Lett. 82, 142 (2003).
http://dx.doi.org/10.1063/1.1533844
104.
104.N. Yamauchi, Jpn. J. Appl. Phys., Part 1 25, 590 (1986).
http://dx.doi.org/10.1143/JJAP.25.590
105.
105.R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, and D. M. De Leeuw, Nat. Mater. 4, 243 (2005).
http://dx.doi.org/10.1038/nmat1329
106.
106.R. Schroeder, L. Majewski, and M. Grell, Adv. Mater. (Weinheim, Ger.) 16, 633 (2004).
http://dx.doi.org/10.1002/adma.200306187
107.
107.G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, D. M. de Leeuw, R. C. G. Naber, and P. W. M. Blom, Appl. Phys. Lett. 87, 092903 (2005).
http://dx.doi.org/10.1063/1.2035324
108.
108.P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, Phys. Rev. Lett. 73, 2107 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2107
109.
109.K. Gotoh, H. Tamaura, H. Takauchi, and A. Yoshida, Jpn. J. Appl. Phys., Part 1 35, 39 (1996).
http://dx.doi.org/10.1143/JJAP.35.39
110.
110.M. Okano and Y. Watanabe, Appl. Phys. Lett. 76, 233 (2000).
http://dx.doi.org/10.1063/1.125712
111.
111.R. Meyer and H. Kohlstedt, IEEE Trans. Ultrason. Ferroelectr. Freq. Control (in press).
112.
112.W. Zhao and D. Jena, Appl. Phys. Lett. 96, 2095 (2004).
113.
113.L. Esaki, R. B. Laibowitz, and P. J. Stiles, IBM Tech. Discl. Bull. 13, 2161 (1971).
114.
114.H. Kohlstedt, N. A. Pertsev, and R. Waser, Mater. Res. Soc. Symp. Proc. 688, 161 (2002).
115.
115.H. Qu, W. Yao, T. Garcia, J. Zhang, A. V. Sorokin, S. Ducharme, P. A. Dowben, and V. M. Fridkin, Appl. Phys. Lett. 82, 4322 (2003).
http://dx.doi.org/10.1063/1.1582366
116.
116.J. R. Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, and N. A. Pertsev, Appl. Phys. Lett. 83, 4595 (2003).
http://dx.doi.org/10.1063/1.1627944
117.
117.R. Wolf, P. W. M. Blom, and M. P. C. Krijn, U.S. Patent No. 5,541,422 (1996).
118.
118.M. Indlekofer and H. Kohlstedt, Europhys. Lett. 72, 282 (2005).
http://dx.doi.org/10.1209/epl/i2005-10219-7
119.
119.M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 94, 246802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.246802
120.
120.H. Kohlstedt, N. A. Pertsev, J. R. Contreras, and R. Waser, Phys. Rev. B 72, 125341 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125341
121.
121.D. P. Oxley, Electrocomponent Sci. Technol. 3, 217 (1977).
122.
122.D. M. Schaadt, E. T. Yu, V. Vaithyanathan, and D. Schlom, J. Vac. Sci. Technol. B 22, 2030 (2004).
http://dx.doi.org/10.1116/1.1768529
123.
123.A. Dietzel, in Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, edited by R. Waser (Wiley-VCH, Weinheim, 2002), Chap. 24, p. 617.
124.
124.G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.4828
125.
125.Nanoscale Characterization of Ferroelectric Materials, Nanoscience and Technology, edited by M. Alexe and A. Gruverman (Springer-Verlag, Berlin, 2004).
126.
126.Nanoscale Phenomena in Ferroelectric Thin Films, edited by S. Hong (Kluwer Academic, Dordrecht, 2004).
127.
127.K. Franke, J. Besold, W. Haessler, and C. Seegebrath, Surf. Sci. 302, L283 (1994).
http://dx.doi.org/10.1016/0039-6028(94)91089-8
128.
128.T. Tybell, P. Raruch, T. Giamarchi, and J. M. Trescone, Phys. Rev. Lett. 89, 097601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.097601
129.
129.T. Tybell, C. H. Ahn, and J. M. Triscone, Appl. Phys. Lett. 75, 856 (1999).
http://dx.doi.org/10.1063/1.124536
130.
130.H. Shin, Nanoscale Phenomena in Ferroelectric Thin Films (Ref. 126), Chap. XI, p. 263.
131.
131.H. Birk, J. Glatz-Reichenbach, E. Schreck, and K. Dransfeld, J. Vac. Sci. Technol. B 6, 1162 (1991).
132.
132.Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, and K. Kitamura, Nanotechnology 14, 637 (2003).
http://dx.doi.org/10.1088/0957-4484/14/6/314
133.
133.T. P. Ma and J.-P. Han, IEEE Electron Device Lett. 23, 386 (2002).
http://dx.doi.org/10.1109/LED.2002.1015207
134.
134.S. R. Summerfelt, in Thin Film Ferroelectric Materials and Devices, edited by R. Ramesh (Kluwer Academic, Norwell, MA, 1997).
135.
135.H. N. Al-Shareef and A. I. Kingon, in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by C. A. Paz de Araujo, J. F. Scott, and G. W. Taylor (Gordon and Breach, New York, 1996), Chap. 7.
136.
136.A. K. Tagantsev, I. Stolichnov, E. Colla, and N. Setter, J. Appl. Phys., 90, 1387 (2001).
http://dx.doi.org/10.1063/1.1381542
137.
137.H. N. Al-Shareef, D. Dimos, W. L. Warren, and B. A. Tuttle, J. Appl. Phys. 80, 4573 (1996).
http://dx.doi.org/10.1063/1.363440
138.
138.G. Arlt and H. Neumann, Ferroelectrics 87, 109 (1988).
139.
139.M. Grossmann, O. Lohse, D. Bolten, U. Boettger, R. Waser, W. Hartner, M. Kastner, and G. Schindler, Appl. Phys. Lett. 76, 363 (2000).
http://dx.doi.org/10.1063/1.125755
140.
140.A. Gruverman, B. J. Rodriguez, A. I. Kingon, R. J. Nemanich, J. S. Cross, and M. Tsukada, Appl. Phys. Lett. 82, 3071 (2003).
http://dx.doi.org/10.1063/1.1570942
141.
141.B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, 682 (1999).
http://dx.doi.org/10.1038/44352
142.
142.A. Lin, X. Hong, V. Wood, A. A. Verevkin, C. H. Ahn, R. A. McKee, F. J. Walker, and E. D. Specht, Appl. Phys. Lett. 78, 2034 (2001).
http://dx.doi.org/10.1063/1.1358848
143.
143.A. Gruverman, Appl. Phys. Lett. 75, 1452 (1999).
http://dx.doi.org/10.1063/1.124722
144.
144.V. Nagarajan, S. Aggarwal, A. Gruverman, R. Ramesh, and R. Waser, Appl. Phys. Lett. 86, 262910 (2005).
http://dx.doi.org/10.1063/1.1977183
145.
145.H. Funakubo, et al., Mater. Sci. Eng., B 118, 23 (2005), and references therein.
146.
146.T. Oikawa, M. Aratani, K. Saito, and H. Funakubo, J. Cryst. Growth 237–239, 455 (2002).
147.
147.C. M. Foster, G. R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr, and J. Amano, J. Appl. Phys. 81, 2349 (1997).
http://dx.doi.org/10.1063/1.364239
148.
148.B. Jaffe, W. Jaffe, and R. Cook, Piezoelectric Ceramics (Academic, London, 1972).
149.
149.C. Dehoff, B. J. Rodriguez, A. I. Kingon, R. J. Nemanich, A. Gruverman, and J. S. Cross, Rev. Sci. Instrum. 76, 023708 (2005).
http://dx.doi.org/10.1063/1.1850652
150.
150.J. Li, H. Liang, B. Nagaraj, W. Cao, C. H. Lee, and R. Ramesh, J. Lightwave Technol. 21, 3283 (2003).
151.
151.J. Li, B. Nagaraj, H. Liang, W. Cao, C. H. Lee, and R. Ramesh, Appl. Phys. Lett. 84, 1174 (2004).
http://dx.doi.org/10.1063/1.1644917
152.
152.E. Sviridov, V. Alyoshin, V. Mukhortov, Y. Golovko, V. Dudkevich, and E. Fesenko, Ferroelectrics 56, 1153 (1984).
153.
153.E. Sviridov, V. Alyoshin, Y. Golovko, I. Zakharchenko, V. Mukhortov, and V. Dudkevich, Ferroelectrics 128, 1 (1992).
154.
154.H. Odagawa and Y. Cho, Ferroelectrics 251, 29 (2001).
155.
155.C. S. Ganpule, et al., Appl. Phys. Lett. 77, 292 (2000).
http://dx.doi.org/10.1063/1.126954
156.
156.A. Seifert, F. F. Lange, and J. S. Speck, J. Mater. Res. 10, 680 (1995).
157.
157.T. Maruyama, M. Saitoh, T. H. I. Sakai, Y. Yano, and T. Noguchi, Appl. Phys. Lett. 73, 3524 (1998).
http://dx.doi.org/10.1063/1.122824
158.
158.A. L. Roytburd, S. P. Alpay, L. A. Bendersky, V. Nagarajan, and R. Ramesh, J. Appl. Phys. 89, 553 (2001).
http://dx.doi.org/10.1063/1.1328781
159.
159.C. M. Foster, et al., J. Appl. Phys. 78, 2607 (1995).
http://dx.doi.org/10.1063/1.360121
160.
160.K. S. Lee and S. Baik, J. Appl. Phys. 87, 8035 (2000).
http://dx.doi.org/10.1063/1.373493
161.
161.B. S. Kwak, A. Erbil, B. J. Wilkens, J. D. Budai, M. F. Chisholm, and L. A. Boatner, Phys. Rev. Lett. 68, 3733 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3733
162.
162.R. Ahluwalia and W. Cao, J. Appl. Phys. 89, 8105 (2001).
http://dx.doi.org/10.1063/1.1371282
163.
163.W. Y. Hsu and R. Raj, Appl. Phys. Lett. 67, 792 (1995).
http://dx.doi.org/10.1063/1.115469
164.
164.S. P. Alpay, A. S. Prakash, S. Aggarwal, R. Ramesh, and A. L. Roytburd, Mater. Res. Soc. Symp. Proc. 493, 111 (1998).
165.
165.Y. M. Kang and S. Baik, J. Appl. Phys. 82, 2532 (1997).
http://dx.doi.org/10.1063/1.366064
166.
166.B. S. Kwak, A. Erbil, J. D. Budai, M. F. Chisholm, L. A. Boatner, and B. J. Wilkens, Phys. Rev. B 49, 14865 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14865
167.
167.K. S. Lee and S. Baik, J. Appl. Phys. 85, 1995 (1999).
http://dx.doi.org/10.1063/1.369195
168.
168.K. S. Lee, Y. M. Kang, and S. Baik, Integr. Ferroelectr. 14, 43 (1997).
169.
169.T. Ogawa, A. Senda, and T. Kasanami, Jpn. J. Appl. Phys., Part 1 30, 2145 (1991).
http://dx.doi.org/10.1143/JJAP.30.2145
170.
170.V. Srikant, E. J. Tarse, D. R. Clarke, and J. S. Speck, J. Appl. Phys. 77, 1517 (1995).
http://dx.doi.org/10.1063/1.358902
171.
171.D. L. Kaiser, M. D. Vaudin, L. D. Rotter, Z. L. Wang, J. P. Cline, C. S. Hwang, R. B. Marinenko, and J. G. Gillen, Appl. Phys. Lett. 66, 2801 (1995).
http://dx.doi.org/10.1063/1.113480
172.
172.Z. Surowiak, V. M. Mukhortov, and V. P. Dudkevich, Ferroelectrics 139, 1 (1993).
173.
173.S. Tsunekawa, T. Fukuda, T. Ozaki, Y. Yoneda, T. Okabe, and H. Terauchi, J. Appl. Phys. 84, 999 (1998).
http://dx.doi.org/10.1063/1.368167
174.
174.S. Tsunekawa, T. Fukuda, T. Ozaki, Y. Yoneda, and H. Terauchi, Appl. Phys. Lett. 71, 1486 (1997).
http://dx.doi.org/10.1063/1.119944
175.
175.S. K. Streiffer, et al., Phys. Rev. Lett. 89, 067601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.067601
176.
176.S. K. Streiffer, et al., J. Appl. Phys. 83, 2742 (1998).
http://dx.doi.org/10.1063/1.366632
177.
177.A. E. Romanov, A. Vojta, W. Pompe, M. J. Lefevre, and J. S. Speck, Phys. Status Solidi A 172, 225 (1999).
http://dx.doi.org/10.1002/(SICI)1521-396X(199903)172:1<225::AID-PSSA225>3.0.CO;2-2
178.
178.C. H. Lin, B. M. Yen, R. S. Batzer, and H. Chen, Ferroelectrics 221, 237 (1999).
179.
179.C. E. Zybill, et al., Mater. Res. Soc. Symp. Proc. 541, 449 (1999).
180.
180.C. E. Zybill, B. Li, F. Koch, and T. Graf, Phys. Status Solidi A 177, 303 (2000).
http://dx.doi.org/10.1002/(SICI)1521-396X(200001)177:1<303::AID-PSSA303>3.0.CO;2-G
181.
181.V. Gopalan and R. Raj, Appl. Phys. Lett. 68, 1323 (1996).
http://dx.doi.org/10.1063/1.115922
182.
182.V. Gopalan and R. Raj, J. Appl. Phys. 81, 865 (1997).
http://dx.doi.org/10.1063/1.364222
183.
183.Y. Barad, J. Lettieri, C. D. Theis, D. G. Schlom, V. Gopalan, J. C. Jiang, and X. Q. Pan, J. Appl. Phys. 89, 1387 (2001).
http://dx.doi.org/10.1063/1.1334641
184.
184.A. Gruverman and Y. Ikeda, Jpn. J. Appl. Phys., Part 2 37, L939 (1998).
http://dx.doi.org/10.1143/JJAP.37.L939
185.
185.M. A. Zurbuchen, G. Asayama, D. G. Schlom, and S. K. Streiffer, Phys. Rev. Lett. 88, 107601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.107601
186.
186.A. L. Roytburd, Phys. Status Solidi A 37, 329 (1976).
187.
187.W. Pompe, X. Gong, Z. Suo, and J. S. Speck, J. Appl. Phys. 74, 6012 (1993).
http://dx.doi.org/10.1063/1.355215
188.
188.N. A. Pertsev and A. G. Zembilgotov, J. Appl. Phys. 78, 6170 (1995).
http://dx.doi.org/10.1063/1.360561
189.
189.A. E. Romanov, W. Pompe, and J. S. Speck, J. Appl. Phys. 79, 4037 (1996).
http://dx.doi.org/10.1063/1.361866
190.
190.V. G. Koukhar, N. A. Pertsev, and R. Waser, Phys. Rev. B 64, 214103 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.214103
191.
191.Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Appl. Phys. Lett. 78, 3878 (2001).
http://dx.doi.org/10.1063/1.1377855
192.
192.A. L. Roytburd, J. Appl. Phys. 83, 239 (1998).
http://dx.doi.org/10.1063/1.366678
193.
193.A. L. Roytburd, in Thin Films Ferroelectric Material and Devices, edited by R. Ramesh (Kluwer Academic, Boston, 1997).
194.
194.N. A. Pertsev and V. G. Koukhar, Phys. Rev. Lett. 84, 3722 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3722
195.
195.Y. L. Li, S. Choudhury, Z. K. Liu, and L. Q. Chen, Appl. Phys. Lett. 83, 1608 (2003).
http://dx.doi.org/10.1063/1.1600824
196.
196.Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Acta Mater. 50, 395 (2002).
http://dx.doi.org/10.1016/S1359-6454(01)00360-3
197.
197.A. K. Tagantsev (unpublished).
198.
198.K. Lee, K. S. Lee, and S. Baik, J. Appl. Phys. 90, 6327 (2001).
http://dx.doi.org/10.1063/1.1418002
199.
199.A. M. Bratkovsky and A. P. Levanyuk, Phys. Rev. Lett. 80, 3177 (2000).
http://dx.doi.org/10.1103/PhysRevLett.80.3177
200.
200.A. Kopal, P. Mokry, J. Fousek, and T. Bahnik, Ferroelectrics 223, 127 (1999).
201.
201.G. B. Stephenson and K. R. Elder (unpublished).
202.
202.S. P. Alpay, V. Nagarajan, A. Bendersky, M. D. Vaudin, S. Aggarwal, R. Ramesh, and A. L. Roytburd, J. Appl. Phys. 85, 3271 (1999).
http://dx.doi.org/10.1063/1.369670
203.
203.S. P. Alpay and A. L. Roytburd, J. Appl. Phys. 83, 4714 (1998).
http://dx.doi.org/10.1063/1.367260
204.
204.L. S. J. Peng, X. X. Xi, B. H. Moeckly, and S. P. Alpay, Appl. Phys. Lett. 83, 4592 (2003).
http://dx.doi.org/10.1063/1.1631055
205.
205.C. L. Canedy, H. Li, S. P. Alpay, L. Salamanca-Riba, A. L. Roytburd, and R. Ramesh, Appl. Phys. Lett. 77, 1695 (2000).
http://dx.doi.org/10.1063/1.1308531
206.
206.H. Li, A. L. Roytburd, S. P. Alpay, T. D. Tran, L. Salamanca-Riba, and R. Ramesh, Appl. Phys. Lett. 78, 2354 (2001).
http://dx.doi.org/10.1063/1.1359141
207.
207.A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, J. Electroceram. 11, 5 (2003).
http://dx.doi.org/10.1023/B:JECR.0000015661.81386.e6
208.
208.J. H. Haeni, et al., Nature (London) 430, 758 (2004).
http://dx.doi.org/10.1038/nature02773
209.
209.B. H. Park, E. J. Peterson, Q. X. Jia, J. Lee, X. Zeng, W. Si, and X. X. Xi, Appl. Phys. Lett. 78, 533 (2001).
http://dx.doi.org/10.1063/1.1340863
210.
210.T. Yamada, K. F. Astafiev, V. O. Sherman, A. K. Tagantsev, P. Muralt, and N. Setter, Appl. Phys. Lett. 86, 142904 (2005).
http://dx.doi.org/10.1063/1.1897047
211.
211.T. Yamada, K. F. Astafiev, V. O. Sherman, A. K. Tagantsev, P. Muralt, D. Su, and N. Setter, J. Appl. Phys. 98, 054105 (2005).
http://dx.doi.org/10.1063/1.2037211
212.
212.J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom, Appl. Phys. Lett. 82, 3460 (2003).
http://dx.doi.org/10.1063/1.1575935
213.
213.J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).
http://dx.doi.org/10.1016/0022-0248(74)90424-2
214.
214.D.-W. Kim, D.-H. Kim, B.-S. Kang, T. W. Noh, D. R. Lee, and K. B. Lee, Appl. Phys. Lett. 74, 2176 (1999).
http://dx.doi.org/10.1063/1.123792
215.
215.T. Ohnishi, K. Takahashi, M. Nakamura, M. Kawasaki, M. Yoshimoto, and H. Koinuma, Appl. Phys. Lett. 74, 2531 (1999).
http://dx.doi.org/10.1063/1.123888
216.
216.A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
217.
217.See, for instance, R. Kretschmer and K. Binder, Phys. Rev. B 20, 1065 (1979);
http://dx.doi.org/10.1103/PhysRevB.20.1065
217.D. R. Tilley and B. Zeks, Solid State Commun. 49, 823 (1984).
http://dx.doi.org/10.1016/0038-1098(84)90089-9
218.
218.M. D. Glinchuk, E. A. Eliseev, and V. A. Stephanovich, Physica B 322, 356 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)01271-1
219.
219.C. Zhou and D. M. Newns, J. Appl. Phys. 82, 3081 (1997).
http://dx.doi.org/10.1063/1.366147
220.
220.T. Mitsui and J. Furuichi, Phys. Rev. 90, 193 (1953).
http://dx.doi.org/10.1103/PhysRev.90.193
221.
221.I. P. Batra, P. Wurfel, and B. D. Silverman, Phys. Rev. B 8, 3257 (1973).
http://dx.doi.org/10.1103/PhysRevB.8.3257
222.
222.P. Wurfel, I. P. Batra, and J. T. Jacobs, Phys. Rev. Lett. 30, 1218 (1973).
http://dx.doi.org/10.1103/PhysRevLett.30.1218
223.
223.See, for instance, N. A. Pertsev and V. G. Koukhar, Phys. Rev. Lett. 84, 3722 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3722
224.
224.Y. L. Li, S. Y. Hu, and L. Q. Chen, J. Appl. Phys. 97, 34112 (2005).
225.
225.See, for instance, K. Ishikawa, T. Nomura, N. Okada, and K. Takada, Jpn. J. Appl. Phys., Part 1 35, 5196 (1996).
http://dx.doi.org/10.1143/JJAP.35.5196
226.
226.A. I. Kingon and S. Srinivasan, Nat. Mater. 4, 233 (2005).
http://dx.doi.org/10.1038/nmat1334
227.
227.M. D. Losego, L. H. Jimison, J. F. Ihlefeld, and J. P. Maria, Appl. Phys. Lett. 86, 172906 (2005).
http://dx.doi.org/10.1063/1.1919388
228.
228.R. W. Schwartz, Chem. Mater. 9, 2325 (1997).
http://dx.doi.org/10.1021/cm970286f
229.
229.L. M. Doeswijk, G. Rijnders, and D. H. A. Blank, Appl. Phys. A: Mater. Sci. Process. A78, 263 (2004).
http://dx.doi.org/10.1007/s00339-003-2332-0
230.
230.D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature (London) 430, 657 (2004).
http://dx.doi.org/10.1038/nature02756
231.
231.A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature (London) 419, 378 (2002).
http://dx.doi.org/10.1038/nature00977
232.
232.G. J. H. M. Rijnders, A. G. Koster, D. H. A. Blank, and H. Rogalla, Appl. Phys. Lett. 70, 1888 (1997).
http://dx.doi.org/10.1063/1.118687
233.
233.S. D. Bu, M. K. Lee, C. B. Eom, W. Tian, X. Q. Pan, S. K. Streiffer, and J. J. Krajewski, Appl. Phys. Lett. 79, 3482 (2001).
http://dx.doi.org/10.1063/1.1414293
234.
234.T. Maeder, P. Muralt, and L. Sagalowicz, Thin Solid Films 345, 300 (1999).
http://dx.doi.org/10.1016/S0040-6090(98)01420-5
235.
235.P. Muralt, et al., J. Appl. Phys. 83, 3835 (1998).
http://dx.doi.org/10.1063/1.366614
236.
236.B. Pachaly, R. Bruchhaus, D. Pitzer, H. Huber, W. Wersing, and F. Koch, Integr. Ferroelectr. 5, 333 (1994).
237.
237.N. K. Pervez, P. J. Hansen, and R. A. York, Appl. Phys. Lett. 85, 4451 (2004).
http://dx.doi.org/10.1063/1.1818724
238.
238.J. M. Trsicone, L. Frauchiger, M. Decroux, L. Mieville, O. Fischer, C. Beeli, P. Stadelmann, and G. A. Racine, J. Appl. Phys. 79, 4298 (1996).
http://dx.doi.org/10.1063/1.361798
239.
239.C. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, and G. Brown, Thin Solid Films 325, 107 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00507-0
240.
240.M. P. Warusawithana, E. V. Colla, J. N. Eckstein, and M. B. Weissman, Phys. Rev. Lett. 90, 036802 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.036802
241.
241.G. R. Bai, I.-F. Tsu, A. Wang, C. M. Foster, C. E. Murray, and V. P. Dravid, Appl. Phys. Lett. 72, 1572 (1998).
http://dx.doi.org/10.1063/1.121118
242.
242.M. de Keijser and G. J. M. Dormans, J. Cryst. Growth 149, 215 (1995).
http://dx.doi.org/10.1016/0022-0248(95)00045-3
243.
243.M. de Keijser and G. J. M. Dormans, MRS Bull. 21, 37 (1996).
244.
244.M. de Keijser, G. J. M. Dormans, J. F. M. Cillessen, D. M. de Leeuw, and H. W. Zandbergen, Appl. Phys. Lett. 58, 2636 (1991).
http://dx.doi.org/10.1063/1.104792
245.
245.G. J. M. Dormans, P. J. van Veldhoven, and M. de Keijser, J. Cryst. Growth 123, 537 (1992).
http://dx.doi.org/10.1016/0022-0248(92)90615-P
246.
246.Y. K. Kim, H. Morioka, R. Ueno, S. Yokoyama, and H. Funakubo, Appl. Phys. Lett. 86, 21290 (2005).
247.
247.B. S. Kwak, E. P. Boyd, and A. Erbil, Appl. Phys. Lett. 53, 1702 (1988).
http://dx.doi.org/10.1063/1.100471
248.
248.Z. Li, C. M. Foster, D. Guo, H. Zhang, G. R. Bai, P. M. Baldo, and L. E. Rehn, Appl. Phys. Lett. 65, 1106 (1994).
http://dx.doi.org/10.1063/1.112112
249.
249.M. V. R. Murty, S. K. Streiffer, G. B. Stephenson, J. A. Eastman, G. R. Bai, A. Munkholm, O. Auciello, and C. Thompson, Appl. Phys. Lett. 80, 1809 (2002).
http://dx.doi.org/10.1063/1.1458530
250.
250.A. Nagai, H. Morioka, G. Asano, H. Funakubo, and A. Saiki, Appl. Phys. Lett. 86, 142906 (2005).
http://dx.doi.org/10.1063/1.1899770
251.
251.M. Okada, S. Takai, M. Amemiya, and K. Tominaga, Jpn. J. Appl. Phys., Part 1 28, 1030 (1989).
http://dx.doi.org/10.1143/JJAP.28.1030
252.
252.J. F. Roeder, T. H. Baum, S. M. Bilodeau, G. T. Stauf, C. Ragaglia, M. W. Russell, and P. C. V. Buskirk, Adv. Mater. Opt. Electron. 10, 145 (2000).
http://dx.doi.org/10.1002/1099-0712(200005/10)10:3/5<145::AID-AMO416>3.0.CO;2-2
253.
253.K. Saito, I. Yamaji, T. Akai, M. Mitsuya, and H. Funakubo, Jpn. J. Appl. Phys., Part 1 42, 539 (2003).
http://dx.doi.org/10.1143/JJAP.42.539
254.
254.C. H. Ahn, K. M. Rabe, and J. M. Triscone, Science 303, 488 (2004).
http://dx.doi.org/10.1126/science.1092508
255.
255.M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.1083
256.
256.T. M. Shaw, S. Trolier-McKinstry, and P. C. McIntyre, Annu. Rev. Mater. Sci. 30, 263 (2000).
http://dx.doi.org/10.1146/annurev.matsci.30.1.263
257.
257.C. Bungaro and K. M. Rabe, Phys. Rev. B 71, 035420 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035420
258.
258.R. E. Cohen, Nature (London) 358, 136 (1992).
http://dx.doi.org/10.1038/358136a0
259.
259.See, for instance, S. Tinte and M. Stachiotti, Phys. Rev. B 64, 235403 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.235403
260.
260.P. Ghosez and K. M. Rabe, Appl. Phys. Lett. 76, 2767 (2000).
http://dx.doi.org/10.1063/1.126469
261.
261.See, for example, C. B. Parker, J.-P. Maria, and A. I. Kingon, Appl. Phys. Lett. 81, 340 (2002).
http://dx.doi.org/10.1063/1.1490148
262.
262.Note as well that similar results have been observed in thick vinylidene fluoride / trifluoroethylene copolymer films. A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, and A. Zlatkin, Nature (London) 391, 874 (1998).
http://dx.doi.org/10.1038/36069
263.
263.D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Science 304, 1650 (2004), and supplementary material.
http://dx.doi.org/10.1126/science.1098252
264.
264.V. Nagarajan, et al., Appl. Phys. Lett. 84, 5225 (2004).
http://dx.doi.org/10.1063/1.1765742
265.
265.C. Lichtensteiger, J. M. Triscone, J. Junquera, and P. Ghosez, Phys. Rev. Lett. 94, 047603 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.047603
266.
266.J. Junquera and P. Ghosez, Nature (London) 422, 506 (2003).
http://dx.doi.org/10.1038/nature01501
267.
267.I. Kornev, H. Fu, and L. Bellaiche, Phys. Rev. Lett. 93, 196104 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.196104
268.
268.K. J. Choi, et al., Science 306, 1005 (2004).
http://dx.doi.org/10.1126/science.1103218
269.
269.H. Orihara, S. Hashimoto, and Y. Ishibashi, J. Phys. Soc. Jpn. 63, 1031 (1994).
http://dx.doi.org/10.1143/JPSJ.63.1031
270.
270.A. Kolmogorov, Izv. Akad. Nauk SSSR, Ser. Mat. 3, 355 (1937);
270.M. Avrami, J. Chem. Phys. 8, 212 (1940).
http://dx.doi.org/10.1063/1.1750631
271.
271.O. Lohse, M. Grossmann, U. Boettger, D. Bolten, and R. Waser, J. Appl. Phys. 89, 2332 (2001).
http://dx.doi.org/10.1063/1.1331341
272.
272.A. Tagantsev, I. Stolichnov, N. Setter, J. Cross, and M. Tsukada, Phys. Rev. B 66, 214109 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.214109
273.
273.G. Gerra, A. K. Tagantsev, and N. Setter, Phys. Rev. Lett. 94, 107602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.107602
274.
274.S. Hong, E. L. Colla, E. Kim, D. V. Taylor, A. K. Tagantsev, P. Muralt, K. No, and N. Setter, J. Appl. Phys. 86, 607 (1999).
http://dx.doi.org/10.1063/1.370774
275.
275.X. Du and I. Chen, Mater. Res. Soc. Symp. Proc. 493, 311 (1998).
276.
276.D. J. Jung, M. Dawber, J. F. Scott, L. J. Sinnamon, and J. M. Gregg, Integr. Ferroelectr. 48, 59 (2002).
http://dx.doi.org/10.1080/10584580215437
277.
277.I. Stolichnov, A. Tagantsev, N. Setter, and J. Cross, Mater. Res. Soc. Symp. Proc. 784, C67 (2004).
278.
278.V. Nagarajan, C. S. Ganpule, and R. Ramesh, Ferroelectric Random Access Memories Fundamentals and Applications, edited by H. Ishiwara, M. Okuyama, and Y. Arimoto (Springer, New York, 2004), Vol. 93, p. 47.
279.
279.Y. W. So, D. J. Kim, T. W. Noh, J. G. Yoon, and T. K. Song, J. Korean Phys. Soc. 46, 40 (2005).
280.
280.E. Colla, S. Hong, D. Taylor, A. Tagantsev, K. No, and N. Setter, Appl. Phys. Lett. 72, 2763 (1998).
http://dx.doi.org/10.1063/1.121083
281.
281.A. Gruverman, O. Auciello, J. Hatano, and H. Takumoto, Ferroelectrics 184, 11 (1996).
282.
282.I. Stolichnov, L. Malin, E. Colla, A. K. Tagantsev, and N. Setter, Appl. Phys. Lett. 86, 012902 (2005).
http://dx.doi.org/10.1063/1.1845573
283.
283.I. Stolichnov, A. Tagantsev, N. Setter, J. Cross, and M. Tsukada, Appl. Phys. Lett. 83, 3362 (2003).
http://dx.doi.org/10.1063/1.1621730
284.
284.V. Nagarajan et al., Nat. Mater. 2, 43 (2002).
http://dx.doi.org/10.1038/nmat800
285.
285.A. Roelofs, N. A. Pertsev, R. Waser, F. Schlaphof, L. M. Eng, C. Ganpule, V. Nagarajan, and R. Ramesh, Appl. Phys. Lett. 80, 1424 (2002).
http://dx.doi.org/10.1063/1.1448653
286.
286.I. Stolichnov, E. Colla, A. Tagantsev, S. S. N. Bharadwaja, H. Seungbum, N. Setter, J. S. Cross, and M. Tsukada, Appl. Phys. Lett. 80, 4804 (2002).
http://dx.doi.org/10.1063/1.1489478
287.
287.W. Warren, B. Tuttle, D. Dimos, G. Pike, H. Al-Shareef, R. Ramesh, and J. Evans, Jpn. J. Appl. Phys., Part 1 35, 1521 (1998).
http://dx.doi.org/10.1143/JJAP.35.1521
288.
288.D. Dimos, J. Appl. Phys. 76, 4305 (1994).
http://dx.doi.org/10.1063/1.357316
289.
289.M. Grossmann, O. Lhose, D. Bolten, U. Boettger, and R. Waser, Mater. Res. Soc. Symp. Proc. 688, C34 (2002).
290.
290.A. K. Tagantsev, I. Stolichnov, N. Setter, and J. S. Cross, J. Appl. Phys. 96, 6616 (2004).
http://dx.doi.org/10.1063/1.1805190
291.
291.A. Tagantsev and I. Stolichnov, Appl. Phys. Lett. 74, 1326 (1999).
http://dx.doi.org/10.1063/1.123539
292.
292.M. Grossmann, O. Lhose, D. Bolten, U. Boettger, T. Schneller, and R. Waser, J. Appl. Phys. 92, 2680 (2002).
http://dx.doi.org/10.1063/1.1498966
293.
293.M. Grossmann, O. Lhose, D. Bolten, U. Boettger, and R. Waser, J. Appl. Phys. 92, 2688 (2002).
http://dx.doi.org/10.1063/1.1498967
294.
294.P. Schorn, U. Ellerkmann, D. Bolten, U. Boettger, and R. Waser, Integr. Ferroelectr. 53, 361 (2003).
http://dx.doi.org/10.1080/10584580390258282
295.
295.S. Traynor, T. Hadnagy, and L. Kammerdiner, Integr. Ferroelectr. 16, 63 (1997).
296.
296.A. Gruverman and M. Tanaka, J. Appl. Phys. 89, 1836 (2001).
http://dx.doi.org/10.1063/1.1334938
297.
297.J. M. Benedetto, R. A. Moore, and F. B. Mclean, J. Appl. Phys. 75, 460 (1994).
http://dx.doi.org/10.1063/1.355875
298.
298.S. Sun and P. A. Fuierer, Integr. Ferroelectr. 23, 45 (1999).
299.
299.L. Kammerdiner, T. Davenport, and D. Hadnagy, US Patent No. 5969935 (19 October 1999).
300.
300.O. Auciello, Integr. Ferroelectr. 15, 211 (1997).
301.
301.C. A. az de Araujo, J. D. Cuchiaro, L. D. Mcmillan, M. C. Scott, and J. F. Scott, Nature (London) 374, 627 (1995).
http://dx.doi.org/10.1038/374627a0
302.
302.L. Goux et al., IEEE Trans. Electron Devices 52, 447 (2005).
http://dx.doi.org/10.1109/TED.2005.845082
303.
303.Z. G. Zhang, J. S. Liu, Y. N. Wang, J. S. Zhu, F. Yan, X. B. Chen, and H. M. Shen, Appl. Phys. Lett. 73, 788 (1998).
http://dx.doi.org/10.1063/1.122002
304.
304.P. Larsen, G. Dormans, D. Taylor, and P. Van-Veldhoven, J. Appl. Phys. 76, 2405 (1994).
http://dx.doi.org/10.1063/1.357589
305.
305.J. F. Scott and M. Dawber, Appl. Phys. Lett. 76, 3801 (2000).
http://dx.doi.org/10.1063/1.126786
306.
306.W. Warren, D. Dimos, B. Tuttle, G. Pike, R. Schwartz, P. Clew, and D. McIntyre, J. Appl. Phys. 77, 2623 (1995).
307.
307.E. Colla, A. Tagantsev, D. Taylor, and A. Kholkin, Integr. Ferroelectr. 18, 19 (1997).
308.
308.M. Dawber and J. F. Scott, Appl. Phys. Lett. 76, 1060 (2000).
http://dx.doi.org/10.1063/1.125938
309.
309.I. K. Yoo and S. B. Desu, Mater. Sci. Eng., B 13, 319 (1992).
http://dx.doi.org/10.1016/0921-5107(92)90135-V
310.
310.T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, Appl. Phys. Lett. 65, 1522 (1994).
http://dx.doi.org/10.1063/1.112031
311.
311.J. S. Cross, M. Fujiki, M. Tsukada, K. Matsuura, S. Otani, M. Tomotani, Y. Kataoka, Y. Kotaka, and Y. Goto, Integr. Ferroelectr. 25, 605 (1999).
312.
312.I. Stolichnov, A. Tagantsev, N. Setter, J. Cross, and M. Tsukada, Appl. Phys. Lett. 74, 3552 (1999).
http://dx.doi.org/10.1063/1.124158
313.
313.H. Al-Shareef, O. Auciello, and A. Kingon, J. Appl. Phys. 77, 2146 (1994).
http://dx.doi.org/10.1063/1.359572
314.
314.S. B. Majumder, B. Roy, R. S. Katiyar, and S. B. Krupanidhi, Integr. Ferroelectr. 39, 1077 (2001).
315.
315.Q. Zhang and R. W. Whatmore, Mater. Sci. Eng., B 109, 136 (2004).
316.
316.G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
317.
317.L. M. Eng, M. Bammerlin, C. Loppacher, M. Guggisberg, R. Bennewitz, R. Lüthi, E. Meyer, and H. J. Güntherodt, Appl. Surf. Sci. 140, 253 (1999).
http://dx.doi.org/10.1016/S0169-4332(98)00536-4
318.
318.M. Abplanalp, L. Eng, and P. Günter, Appl. Phys. A: Mater. Sci. Process. 66, S231 (1998).
http://dx.doi.org/10.1007/s003390051136
319.
319.U. Zerweck, C. Loppacher, T. Otto, S. Grafström, and L. M. Eng, Phys. Rev. B 71, 125424 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125424
320.
320.D. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
http://dx.doi.org/10.1063/1.94865
321.
321.K. Franke and M. Weihnacht, Ferroelectr., Lett. Sect. 19, 25 (1995).
322.
322.S. V. Kalinin and D. A. Bonnell, in Nanoscale Charaterisation of Ferroelectric Materials, edited by M. Alexe and A. Gruverman (Springer, New York, 2004), Chap. 2.
323.
323.C. Harnagea and A. Pignolet, in Nanoscale Charaterisation of Ferroelectric Materials, edited by M. Alexe and A. Gruverman (Springer, New York, 2004), Chap. 2.
324.
324.M. Abplanalp, M. Zgonik, and P. Guenter, in Nanoscale Charaterisation of Ferroelectric Materials, edited by M. Alexe and A. Gruverman (Springer, New York, 2004), Chap. 2.
325.
325.A. Roelofs, K. Szot, and R. Waser, in Nanoscale Phenomena in Ferroelectric Thin Films, edited by S. Hong (Kluwer, Dordrecht, 2004), Chap. 6.
326.
326.S. Hong and N. Setter, Appl. Phys. Lett. 81, 3437 (2002).
http://dx.doi.org/10.1063/1.1517396
327.
327.S. Hong et al., J. Appl. Phys. 89, 1377 (2001).
http://dx.doi.org/10.1063/1.1331654
328.
328.H. Shin, in Nanoscale Phenomena in Ferroelectric Thin Films, edited by S. Hong (Kluwer, Dordrecht, 2004), Chap. 11.
329.
329.H. Fujisawa and M. Shimizu, in Nanoscale Phenomena in Ferroelectric Thin Films, edited by S. Hong (Kluwer, Dordrecht, 2004), Chap. 9.
330.
330.P. Paruch, T. Tybell, and J. M. Triscone, Appl. Phys. Lett. 79, 530 (2001).
http://dx.doi.org/10.1063/1.1388024
331.
331.J. Woo, S. Hong, D. K. Min, H. Shin, and K. No, Appl. Phys. Lett. 80, 4000 (2002).
http://dx.doi.org/10.1063/1.1481537
332.
332.P. Paruch, T. Giamarchi, and J. M. Triscone, Phys. Rev. Lett. 94, 197601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.197601
333.
333.S. V. Kalinin and D. A. Bonnell, in Nanoscale Phenomena in Ferroelectric Thin Films, edited by S. Hong (Kluwer, Dordrecht, 2004), Chap. 8.
334.
334.S. Hong, B. Ecabart, E. L. Colla, and N. Setter, Appl. Phys. Lett. 84, 2382 (2004).
http://dx.doi.org/10.1063/1.1655695
335.
335.O. Tikhomirov, B. Red’kin, A. Trivelli, and J. Levy, J. Appl. Phys. 87, 1932 (2000).
http://dx.doi.org/10.1063/1.372115
336.
336.A. V. Zayats and I. I. Smolyaninov, Philos. Trans. R. Soc. London, Ser. A 362, 843 (2004).
337.
337.J. Levy, C. Hubert, and A. Trivelli, J. Chem. Phys. 112, 7848 (2000).
http://dx.doi.org/10.1063/1.481389
338.
338.X. K. Orlik, M. Labardi, and M. Allegrini, Appl. Phys. Lett. 77, 2042 (2000).
http://dx.doi.org/10.1063/1.1311947
339.
339.I. I. Smolyaninov, H. Y. Liang, C. H. Lee, and C. C. Davis, J. Appl. Phys. 89, 206 (2001).
http://dx.doi.org/10.1063/1.1331342
340.
340.I. I. Smolyaninov, C. H. Lee, and C. C. Davis, Appl. Phys. Lett. 74, 1942 (1999).
http://dx.doi.org/10.1063/1.123735
341.
341.A. F. Xie, B. Y. Gu, G. Z. Yang, and Z. B. Zhang, Phys. Rev. B 63, 054104 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.054104
342.
342.I. I. Smolyaninov, H. Y. Liang, C. H. Lee, C. C. Davis, V. Nagarajan, and R. Ramesh, J. Microsc. 202, 250 (2001).
http://dx.doi.org/10.1046/j.1365-2818.2001.00885.x
343.
343.T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, Phys. Rev. Lett. 82, 4106 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4106
344.
344.T. Otto, J. Seidel, S. Grafström, and L. M. Eng, Appl. Phys. Lett. 84, 1168 (2004).
http://dx.doi.org/10.1063/1.1647705
345.
345.T. Otto, S. Grafström, and L. M. Eng, Ferroelectrics 303, 149 (2004).
346.
346.C. Hubert, J. Levy, E. Cukauskas, and S. W. Kirchoefer, Integr. Ferroelectr. 29, 227 (2000).
347.
347.J. Renger, V. Deckert, I. Hellmann, S. Grafström, and L. M. Eng, J. Opt. Soc. Am. A 21, 1362 (2004).
http://dx.doi.org/10.1364/JOSAA.21.001362
348.
348.J. Renger, S. Grafström, L. M. Eng, and R. Hillenbrand, Phys. Rev. B 71, 075410 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.075410
349.
349.S. Schneider, S. Grafström, and L. M. Eng, Phys. Rev. B 71, 115418 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.115418
350.
350.H. Chaib, L. M. Eng, T. Otto, and S. Grafström, Phys. Rev. B 71, 085418 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.085418
351.
351.H. Chaib, F. Schlaphof, T. Otto, and L. M. Eng, J. Phys.: Condens. Matter 15, 8927 (2003).
http://dx.doi.org/10.1088/0953-8984/15/50/022
352.
352.H. Chaib, T. Otto, and L. M. Eng, Phys. Status Solidi B 233, 250 (2002).
http://dx.doi.org/10.1002/1521-3951(200209)233:2<250::AID-PSSB250>3.0.CO;2-1
353.
353.H. Chaib, F. Schlaphof, T. Otto, and L. M. Eng, Ferroelectrics 291, 143 (2003).
354.
354.E. I. Bondarenko, V. Y. Topolov, and A. V. Turik, Ferroelectr., Lett. Sect. 13, 13 (1991).
355.
355.R. Herbeit, U. Robels, H. Dederichs, and G. Arlt, Ferroelectrics 98, 107 (1989).
356.
356.D. Damjanovic and M. Demartin, J. Phys.: Condens. Matter 9, 4943 (1997).
http://dx.doi.org/10.1088/0953-8984/9/23/018
357.
357.D. A. Hall, J. Mater. Sci. 36, 4575 (2001).
http://dx.doi.org/10.1023/A:1017959111402
358.
358.V. D. Kugel and L. E. Cross, J. Appl. Phys. 84, 2815 (1998).
http://dx.doi.org/10.1063/1.368422
359.
359.V. Mueller and Q. M. Zhang, Appl. Phys. Lett. 72, 2692 (1998).
http://dx.doi.org/10.1063/1.121101
360.
360.Q. M. Zhang, H. Wang, N. Kim, and L. E. Cross, J. Appl. Phys. 75, 454 (1994).
http://dx.doi.org/10.1063/1.355874
361.
361.D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998).
http://dx.doi.org/10.1088/0034-4885/61/9/002
362.
362.L. Chen, V. Nagarajan, R. Ramesh, and A. L. Roytburd, J. Appl. Phys. 94, 5147 (2003).
http://dx.doi.org/10.1063/1.1610242
363.
363.D. V. Taylor, D. Damjanovic, and N. Setter, Ferroelectrics 244, 299 (1999).
364.
364.D. V. Taylor and D. Damjanovic, Appl. Phys. Lett. 73, 2045 (1998).
http://dx.doi.org/10.1063/1.122362
365.
365.D. V. Taylor and D. Damjanovic, J. Appl. Phys. 82, 1973 (1997).
http://dx.doi.org/10.1063/1.366006
366.
366.D. Damjanovic and G. Robert, in Piezoelectric Materials for the end User, edited by N. Setter (Ceramics Laboratory, EPFL, Lausanne, Switzerland, 2002), Chap. 17, pp. 353388.
367.
367.G. Robert, D. Damjanovic, N. Setter, and A. V. Turik, J. Appl. Phys. 89, 5067 (2001).
http://dx.doi.org/10.1063/1.1359166
368.
368.V. V. Shvartsman, N. A. Pertsev, J. M. Herrero, C. Zaldo, and A. L. Kholkin, J. Appl. Phys. 97, 104105 (2005).
http://dx.doi.org/10.1063/1.1891273
369.
369.S. Trolier-McKinstry, N. B. Gharb, and D. Damjanovic, Appl. Phys. Lett. 88, 202901 (2006).
http://dx.doi.org/10.1063/1.2203750
370.
370.F. Xu, S. Trolier-McKinstry, W. Ren, and B. Xu, J. Appl. Phys. 89, 1336 (2001).
http://dx.doi.org/10.1063/1.1325005
371.
371.S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).
http://dx.doi.org/10.1063/1.365983
372.
372.X. H. Du, J. Zheng, U. Belegundu, and K. Uchino, Appl. Phys. Lett. 72, 2421 (1998).
http://dx.doi.org/10.1063/1.121373
373.
373.D. V. Taylor and D. Damjanovic, Appl. Phys. Lett. 76, 1615 (2000).
http://dx.doi.org/10.1063/1.126113
374.
374.D. Damjanovic, J. Am. Ceram. Soc. 88, 2663 (2005).
http://dx.doi.org/10.1111/j.1551-2916.2005.00671.x
375.
375.M. J. Haun, Z. Q. Zhuang, E. Furman, S. J. Jang, and L. E. Cross, Ferroelectrics 99, 45 (1989).
376.
376.M. Budimir, D. Damjanovic, and N. Setter, Appl. Phys. Lett. 85, 2890 (2004).
http://dx.doi.org/10.1063/1.1799231
377.
377.M. Davis, D. Damjanovic, D. Hayem, and N. Setter, J. Appl. Phys. 98, 014102 (2005).
http://dx.doi.org/10.1063/1.1929091
378.
378.Z. Kighelman, D. Damjanovic, M. Cantoni, and N. Setter, J. Appl. Phys. 91, 1495 (2002).
http://dx.doi.org/10.1063/1.1431432
379.
379.Y. Zhang, I. S. Baturin, E. Aulbach, D. C. Lupascu, A. L. Kholkin, Y. V. Shur, and J. Rödel, Appl. Phys. Lett. 86, 012910 (2005).
http://dx.doi.org/10.1063/1.1847712
380.
380.N. A. Pertsev, A. G. Zembilgotov, S. Hoffman, R. Waser, and A. K. Tagantsev, J. Appl. Phys. 85, 1698 (1999).
http://dx.doi.org/10.1063/1.369338
381.
381.N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.1988
382.
382.S. K. Streiffer, C. Basceri, C. B. Parker, S. E. Lash, and A. I. Kingon, J. Appl. Phys. 86, 4565 (1999).
http://dx.doi.org/10.1063/1.371404
383.
383.A. K. Tagantsev, N. A. Pertsev, P. Muralt, and N. Setter, Phys. Rev. B 65, 012104 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.012104
384.
384.Y. Yoneda, T. Okabe, K. Sakaue, and H. Terauchi, J. Appl. Phys. 83, 2458 (1998).
http://dx.doi.org/10.1063/1.367006
385.
385.N. A. Pertsev, G. Arlt, and A. G. Zembilgotov, Phys. Rev. Lett. 76, 1364 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1364
386.
386.C. Basceri, S. K. Streiffer, A. I. Kingon, and R. Waser, J. Appl. Phys. 82, 2497 (1997).
http://dx.doi.org/10.1063/1.366062
387.
387.O. G. Vendik and S. P. Zubko, J. Appl. Phys. 88, 5343 (2000).
http://dx.doi.org/10.1063/1.1317243
388.
388.A. M. Bratkovsky and A. P. Levanyuk, Phys. Rev. B 63, 132103 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.132103
389.
389.P. Mokry, A. K. Tagantsev, and N. Setter, Phys. Rev. B 70, 172107 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.172107
390.
390.A. M. Bratkovsky and A. P. Levanyuk, Phys. Rev. Lett. 94, 107601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.107601
391.
391.O. G. Vendik, E. K. Hollmann, A. B. Kozyrev, and A. M. Prudan, J. Supercond. 12, 325 (1999).
http://dx.doi.org/10.1023/A:1007797131173
392.
392.J. D. Baniecki, R. B. Laibowitz, T. M. Shaw, P. R. Duncombe, D. A. Neumayer, D. E. Kotecki, H. Shen, and Q. Y. Ma, Appl. Phys. Lett. 72, 498 (1998).
http://dx.doi.org/10.1063/1.120796
393.
393.S. Razumov et al., Integr. Ferroelectr. 39, 1317 (2001).
394.
394.A. K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics, London, 1996).
395.
395.Y. Fukuda, K. Numata, K. Aoki, and A. Nishimura, Jpn. J. Appl. Phys., Part 1 35, 5178 (1996).
http://dx.doi.org/10.1143/JJAP.35.5178
396.
396.R. Waser, in Science and Technology of Electroceramic Thin Films, edited by O. Auciello and R. Waser (Kluwer Academic, Norwell, MA, 1995), Vol. 284, p. 223.
397.
397.O. G. Vendik and L. M. Platonova, J. Phys. Soc. Jpn. 28, 61 (1970).
398.
398.J. Petzelt et al., Phys. Rev. B 64, 184111 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.184111
399.
399.Y. Lemaitre, B. Marcilhac, D. Mansart, J. Siejka, and J. C. Mage, Physica C 372, 667 (2002).
http://dx.doi.org/10.1016/S0921-4534(02)00826-2
400.
400.K. F. Astafiev, V. O. Sherman, A. K. Tagantsev, N. Setter, T. Kaydanova, and D. S. Ginley, Appl. Phys. Lett. 84, 2385 (2004).
http://dx.doi.org/10.1063/1.1690878
401.
401.A. Tagantsev, Appl. Phys. Lett. 76, 1182 (2000).
http://dx.doi.org/10.1063/1.125976
402.
402.K. F. Astafiev, A. K. Tagantsev, and N. Setter, J. Appl. Phys. 97, 014106 (2005).
http://dx.doi.org/10.1063/1.1829149
403.
403.S. Iigima, Nature (London) 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
404.
404.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14, 3160 (1998).
http://dx.doi.org/10.1021/la9713816
405.
405.R. Tene, L. Margulis, and M. Genud, Nature (London) 360, 444 (1992).
http://dx.doi.org/10.1038/360444a0
406.
406.I. I. Naumov, L. Bellaiche, and H. Fu, Nature (London) 432, 737 (2004).
http://dx.doi.org/10.1038/nature03107
407.
407.E. J. Mele and P. Král, Phys. Rev. Lett. 88, 056803 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.056803
408.
408.S. M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernholc, and M. B. Nardelli, Phys. Rev. B 67, 235406 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.235406
409.
409.Y. Luo et al., Appl. Phys. Lett. 83, 440 (2003).
http://dx.doi.org/10.1063/1.1592013
410.
410.F. D. Morrison, L. Ramsay, and J. F. Scott, J. Phys.: Condens. Matter 15, L527 (2003).
http://dx.doi.org/10.1088/0953-8984/15/33/103
411.
411.J. J. Urban, W. S. Yun, Q. Gu, and H. Park, J. Am. Ceram. Soc. 124, 1186 (2002).
412.
412.Y. Mao, S. Banerjee, and S. S. Wong, J. Am. Chem. Soc. 125, 15718 (2003).
http://dx.doi.org/10.1021/ja038192w
413.
413.Y. Mao, S. Banerjee, and S. S. Wong, Chem. Commun. (Cambridge) 2003, p. 408.
414.
414.J.-F. Liu, X.-L. Li, and Y.-D. Li, J. Nanosci. Nanotechnol. 2, 617 (2002).
http://dx.doi.org/10.1166/jnn.2002.152
415.
415.N. P. Padture and X. Wei, J. Am. Ceram. Soc. 86, 2215 (2003).
416.
416.E. Vasco, A. Magrez, L. Forro, and N. Setter, J. Phys. Chem. B 109, 14331 (2005).
417.
417.G. Suyal, E. Colla, R. Gysel, and N. Setter, Nano Lett. 4, 1339 (2004).
http://dx.doi.org/10.1021/nl049333a
418.
418.W. S. Yun, J. J. Urban, Q. Gu, and H. Park, Nano Lett. 2, 447 (2002).
http://dx.doi.org/10.1021/nl015702g
419.
419.H. Schmid, Ferroelectrics 162, 317 (1994).
420.
420.E. Ascher, H. Rieder, H. Schmid, and H. Stössel, J. Appl. Phys. 37, 1404 (1966).
http://dx.doi.org/10.1063/1.1708493
421.
421.G. A. Smolenskii, V. A. Isupov, and A. I. Agranovskaya, Sov. Phys. Solid State 1, 149 (1959).
422.
422.G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982).
http://dx.doi.org/10.1070/PU1982v025n07ABEH004570
423.
423.J. Wang et al., Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
424.
424.C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 224103 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.224103
425.
425.W. Eerenstein, F. D. Morrison, J. Dho, M. G. Blamire, J. F. Scott, and N. D. Mathur, Science 307, 1203 (2005).
http://dx.doi.org/10.1126/science.1105422
426.
426.J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B 71, 014113 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014113
427.
427.J. Wang et al., Science 307, 1203b (2005).
428.
428.K. Y. Yun, M. Noda, and M. Okuyama, Appl. Phys. Lett. 83, 3981 (2003).
http://dx.doi.org/10.1063/1.1626267
429.
429.B. K. Ponomarev, S. A. Ivanov, Yu. F. Popov, V. D. Negril, and B. S. Red'kin, Ferroelectrics 161, 43 (1994).
430.
430.N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, Nature (London) 429, 392 (2004).
http://dx.doi.org/10.1038/nature02572
431.
431.T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).
http://dx.doi.org/10.1038/nature02018
432.
432.N. Hill, J. Phys. Chem. B 104, 6694 (2000).
http://dx.doi.org/10.1021/jp000114x
433.
433.J. M. Gregg, J. Phys.: Condens. Matter 15, V11 (2003), and references therein.
http://dx.doi.org/10.1088/0953-8984/15/25/401
434.
434.A. Q. Jiang, J. F. Scott, H. Lu, and Z. Chen, J. Appl. Phys. 93, 1180 (2003).
http://dx.doi.org/10.1063/1.1533094
435.
435.J. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis, and D. G. Schlom, Appl. Phys. Lett. 74, 2851 (1999).
http://dx.doi.org/10.1063/1.124035
436.
436.H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, and D. H. Lowndes, Nature (London) 433, 395 (2005).
http://dx.doi.org/10.1038/nature03261
437.
437.See S. Dong, J.-F. Li, and D. Viehland, Appl. Phys. Lett. 83, 2265 (2003);
http://dx.doi.org/10.1063/1.1611276
437.G. Srinivasan, E. T. Tasmussen, A. A. Bush, K. E. Kamentsev, V. F. Meshcheryakov, and Y. K. Fetisov, Appl. Phys. A: Mater. Sci. Process. 78, 721 (2004), and references therein.
http://dx.doi.org/10.1007/s00339-002-1987-2
438.
438.H. Zheng et al., Science 303, 661 (2004).
http://dx.doi.org/10.1126/science.1094207
439.
439.J. H. Li, I. Levin, J. Slutsker, V. Provenzano, P. K. Schenck, R. Ramesh, J. Ouyang, and A. L. Roytburd, Appl. Phys. Lett. 87, 072909 (2005).
http://dx.doi.org/10.1063/1.2031939
440.
440.F. Zavaliche et al., Nano Lett. 5, 1793 (2005).
http://dx.doi.org/10.1021/nl051406i
441.
441.T. Zhao, S. R. Shinde, S. B. Ogale, H. Zheng, T. Venkatesan, R. Ramesh, and S. D. Sarma, Phys. Rev. Lett. 94, 126601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.126601
442.
442.N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phys. Rev. B 61, R825 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.R825
443.
443.Numerical Data and Functional Relationships in Science and Technology, Landolt-Bornstein New series, Vol. III/29a,b (Springer, New York, 1981).
444.
444.H. Uwe and T. Sakudo, Phys. Rev. B 13, 271 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.271
445.
445.S. Trolier-McKinstry and P. Muralt, in Electroceramic Based MEMS, edited by N. Setter (Springer, New York, 2005), p. 199.
446.
446.K. S. Lee, J. H. Choi, J. Y. Lee, and S. Baik, J. Appl. Phys. 90, 4095 (2001).
http://dx.doi.org/10.1063/1.1404424
447.
447.D. V. Taylor, Ph.D. thesis Swiss Federal Institute of Technology (EPFL), 1999.
448.
448.In the case where the substrate is pseudocubic.
449.
449.The following relations correspond to those from Ref. 383 to within the difference in the definition of .
450.
450.In the case of , the whole set of data for ’s is contradictory; a self-consistent subset of these data has been used in calculations. A discussion of the inaccuracy of the evaluation of strain effects on the permittivity of can be found in Ref. 208. In the case of , Eqs. (7)–(9) are applicable for temperatures higher than , and for lower temperatures the effect of the quantum statistics should be taken into account (see Refs. 208 and 442 for a more detailed discussion). There may also be small corrections associated with the structure phase transition.
http://aip.metastore.ingenta.com/content/aip/journal/jap/100/5/10.1063/1.2336999
Loading
/content/aip/journal/jap/100/5/10.1063/1.2336999
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/100/5/10.1063/1.2336999
2006-09-12
2016-05-26

Abstract

An overview of the state of art in ferroelectric thin films is presented. First, we review applications: microsystems’ applications, applications in high frequency electronics, and memories based on ferroelectric materials. The second section deals with materials,structure (domains, in particular), and size effects. Properties of thin films that are important for applications are then addressed: polarization reversal and properties related to the reliability of ferroelectric memories, piezoelectric nonlinearity of ferroelectricfilms which is relevant to microsystems’ applications, and permittivity and loss in ferroelectric films—important in all applications and essential in high frequency devices. In the context of properties we also discuss nanoscale probing of ferroelectrics. Finally, we comment on two important emerging topics: multiferroic materials and ferroelectric one-dimensional nanostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/100/5/1.2336999.html;jsessionid=-OHimI6lYb8Pcnkv8QqfUxPf.x-aip-live-02?itemId=/content/aip/journal/jap/100/5/10.1063/1.2336999&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/100/5/10.1063/1.2336999&pageURL=http://scitation.aip.org/content/aip/journal/jap/100/5/10.1063/1.2336999'
Right1,Right2,Right3,