Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/100/5/10.1063/1.2345471
1.
1.For example, see S. Yoshida, in Electric Refractory Materials, edited by Y. Kumashiro (Dekker, New York, 2000).
2.
2.A. Gölz, G. Horstmann, E. Stein von Kamienski, and H. Kurz, Inst. Phys. Conf. Ser. 142, 633 (1996).
3.
3.K. Fukuda, W. J. Cho, K. Arai, S. Suzuki, J. Senzaki, and T. Tanaka, Appl. Phys. Lett. 77, 866 (2000).
http://dx.doi.org/10.1063/1.1306649
4.
4.K. Kojima, T. Suzuki, S. Kuroda, J. Nishio, and K. Arai, Jpn. J. Appl. Phys., Part 2 42, L637 (2003).
http://dx.doi.org/10.1143/JJAP.42.L637
5.
5.K. Kojima, H. Okumura, S. Kuroda, and K. Arai, J. Cryst. Growth 269, 367 (2004).
6.
6.K. Kojima, H. Okumura, S. Kuroda, K. Arai, A. Ohi, and H. Akinaga, Mater. Sci. Forum 483–485, 93 (2005).
7.
7.K. Fukuda, M. Kato, K. Kojima, and J. Senzaki, Appl. Phys. Lett. 84, 2088 (2004).
http://dx.doi.org/10.1063/1.1682680
8.
8.K. Fukuda, M. Kato, J. Senzaki, K. Kojima, and T. Suzuki, Mater. Sci. Forum 457–460, 1417 (2004).
9.
9.W. Cho, R. Kosugi, J. Senzaki, K. Fukuda, K. Arai, and S. Suzuki, Appl. Phys. Lett. 77, 2054 (2000).
http://dx.doi.org/10.1063/1.1312862
10.
10.H. Yano, T. Kimoto, and H. Matsunami, Mater. Sci. Forum 353–356, 627 (2001).
11.
11.A. Poggi, F. Moscatelli, A. Scorzoni, G. Marino, R. Nipoti, and M. San-martin, Mater. Sci. Forum 527–529, 979 (2006).
12.
12.C. Virojanadara and L. I. Johansson, Surf. Sci. 505, 358 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01154-8
13.
13.C. Virojanadara and L. I. Johansson, Phys. Rev. B 71, 195335 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195335
14.
14.H. Kobayashi, T. Sakurai, M. Takahashi, and Y. Nishioka, Phys. Rev. B 67, 115305 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.115305
15.
15.Y. Hijikata, H. Yaguchi, S. Yoshida, Y. Takata, K. Kobayashi, S. Shin, H. Nohira, and T. Hattori, Mater. Sci. Forum 483-485, 585 (2005).
16.
16.S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley-Interscience, New York, 1981).
17.
17.Y. Hijikata, H. Yaguchi, M. Yoshikawa, and S. Yoshida, Appl. Surf. Sci. 184, 161 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00491-3
18.
18.T. Iida, Y. Tomioka, Y. Hijikata, H. Yaguchi, M. Yoshikawa, Y. Ishida, H. Okumura, and S. Yoshida, Jpn. J. Appl. Phys., Part 2 39, L1054 (2000).
http://dx.doi.org/10.1143/JJAP.39.L1054
19.
19.T. Iida et al., Jpn. J. Appl. Phys., Part 1 41, 800 (2002).
http://dx.doi.org/10.1143/JJAP.41.800
20.
20.Y. Hijikata, H. Yaguchi, M. Yoshikawa, and S. Yoshida, J. Vac. Sci. Technol. A 23, 298 (2005).
http://dx.doi.org/10.1116/1.1865153
21.
21.J. R. LaRoche et al., Electrochem. Solid-State Lett. 7, G21 (2004).
http://dx.doi.org/10.1149/1.1632872
22.
22.For example, see J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain, 2nd ed. (Perkin-Elmer, Minnesota, 1992).
23.
23.V. V. Afanas’ev, A. Stesmans, M. Bassler, G. Pensl, M. J. Schulz, and C. I. Harris, Appl. Phys. Lett. 68, 2141 (1996).
http://dx.doi.org/10.1063/1.115611
24.
24.K. C. Chang, N. T. Nuhfer, L. M. Porter, and Q. Wahab, Appl. Phys. Lett. 77, 2186 (2000).
http://dx.doi.org/10.1063/1.1314293
25.
25.W. Lu, L. C. Feldman, Y. Song, S. Dhar, W. E. Collins, W. C. Mitchel, and J. R. Williams, Appl. Phys. Lett. 85, 3495 (2004).
http://dx.doi.org/10.1063/1.1804610
26.
26.The parameters selected for the C spectra were Lorentzian to Gaussian ratio of 0.1, a Lorentzian width of , and an asymmetry parameter value of zero. Best spectrum fits were obtained by using Gaussian widths of 0.58, 1.45, and for SiC, , and components, respectively.
27.
27.The parameters selected for the Si spectra were a spin orbit splitting of , a branching ratio of 0.50, Lorentzian to Gaussian ratio of zero, and an asymmetry parameter value of zero. Best spectrum fits were obtained by using Gaussian widths of 0.55, 0.80, and for SiC, suboxide, and components, respectively.
28.
28.L. I. Johansson, C. Virojanadara, Th. Eickhoff, and W. Drube, Surf. Sci. 529, 515 (2003).
http://dx.doi.org/10.1016/S0039-6028(03)00337-6
29.
29.Y. Hijikata, H. Yaguchi, M. Yoshikawa, and S. Yoshida, Mater. Sci. Forum 457–460, 1341 (2004).
30.
30.Y. Hoshino, T. Nishimura, T. Yoneda, K. Ogawa, H. Namba, and Y. Kido, Surf. Sci. 505, 234 (2002).
31.
31.The parameters selected for the Si spectra were Lorentzian to Gaussian ratio of 0.3, a Lorentzian width of , and an asymmetry parameter value of zero. Best spectrum fits were obtained by using Gaussian widths of 0.82, 1.05, and for SiC, suboxide, and components, respectively.
32.
32.K. Takahashi, H. Nohira, K. Hirose, and T. Hattori, Appl. Phys. Lett. 83, 3422 (2003).
http://dx.doi.org/10.1063/1.1616204
33.
33.T. Suzuki, M. Muto, M. Hara, K. Yamabe, and T. Hattori, Jpn. J. Appl. Phys., Part 1 25, 544 (1986).
http://dx.doi.org/10.1143/JJAP.25.544
34.
34.M. Shioji et al., Appl. Phys. Lett. 84, 3756 (2004).
http://dx.doi.org/10.1063/1.1737793
35.
35.M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).
http://dx.doi.org/10.1002/sia.740010103
36.
36.H. Nohira et al., Appl. Phys. Lett. 86, 081911 (2005).
http://dx.doi.org/10.1063/1.1868066
37.
37.K. Hirose, H. Kitahara, and T. Hattori, Phys. Rev. B 67, 195313 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.195313
38.
38.E. Cartier and J. H. Stathis, Microelectron. Eng. 48, 17 (1999).
http://dx.doi.org/10.1016/S0167-9317(99)00329-9
http://aip.metastore.ingenta.com/content/aip/journal/jap/100/5/10.1063/1.2345471
Loading
/content/aip/journal/jap/100/5/10.1063/1.2345471
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/100/5/10.1063/1.2345471
2006-09-15
2016-12-08

Abstract

Wet and dry oxide films- epitaxial C-face interfaces have been characterized by capacitance-voltage measurements and soft x-ray excited photoemission spectroscopy (SX-PES) and hard x-ray excited photoemission spectroscopy (HX-PES) using synchrotron radiation. The interface state density for wet oxidation is much smaller than that for dry oxidation at any energy level. In the PES measurements, intermediate oxidation states such as and were observed. In addition, the areal densities of these states were found to be in a good correspondence with those of the interface states. The reasons for the good electrical characteristics of metal-oxide-semiconductor devices fabricated by wet oxidation are discussed in terms of the depth profiles of oxide films derived from the SX-PES and HX-PES results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/100/5/1.2345471.html;jsessionid=3TfcDIcsiu3HOiZ9SdkFL28A.x-aip-live-02?itemId=/content/aip/journal/jap/100/5/10.1063/1.2345471&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/100/5/10.1063/1.2345471&pageURL=http://scitation.aip.org/content/aip/journal/jap/100/5/10.1063/1.2345471'
Right1,Right2,Right3,