Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/101/9/10.1063/1.2734885
1.
1.M. A. Green, Sol. Energy 76, 3 (2004).
http://dx.doi.org/10.1016/S0038-092X(03)00065-3
2.
2.M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O'Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, Sol. Energy 77, 857 (2004).
http://dx.doi.org/10.1016/j.solener.2004.06.023
3.
3.A. G. Aberle, J. Cryst. Growth 287, 386 (2006).
4.
4.M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, Sol. Energy Mater. Sol. Cells 68, 135 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00242-7
5.
6.
6.S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, Appl. Phys. Lett. 88, 161102 (2006).
http://dx.doi.org/10.1063/1.2195695
7.
7.D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
http://dx.doi.org/10.1063/1.1855423
8.
8.H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 73, 3815 (1998).
http://dx.doi.org/10.1063/1.122903
9.
9.R. W. Wood, Proc. Phys. Soc. London 18, 166 (1902).
10.
10.R. H. Ritchie, Surf. Sci. 34, 1 (1973).
http://dx.doi.org/10.1016/0039-6028(95)00799-7
11.
11.C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
12.
12.C. F. Bohren, Am. J. Phys. 51, 323 (1983).
http://dx.doi.org/10.1119/1.13262
13.
13.M. Cortie, X. Xu, H. Chowdhury, H. Zareie, and G. Smith, Proc. SPIE 5649, 565 (2005).
14.
14.D. Pissuwan, S. Valenzuela, and M. B. Cortie, Trends Biotechnol. 24, 62 (2006).
http://dx.doi.org/10.1016/j.tibtech.2005.12.004
15.
15.U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Wiley, New York, 1995).
16.
16.P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrel, Phys. Rev. B 35, 3753 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.3753
17.
17.G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, Appl. Phys. Lett. 82, 3811 (2003).
http://dx.doi.org/10.1063/1.1578518
18.
18.K. Baba, T. Okuno, and M. Miyagi, Appl. Phys. Lett. 62, 437 (1993).
http://dx.doi.org/10.1063/1.108926
19.
19.S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00277-2
20.
20.J. Zhao, A. Wang, and M. A. Green, Prog. Photovoltaics 7, 471 (1999).
http://dx.doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
21.
21.K. R. Catchpole and S. Pillai, J. Appl. Phys. 100, 044504 (2006).
http://dx.doi.org/10.1063/1.2226334
22.
22.T. Gotz, W. Hoheisel, M. Vollmer, and F. Trager, Z. Phys. D: At., Mol. Clusters 33, 133 (1995).
http://dx.doi.org/10.1007/BF01437432
23.
23.J. L. Bijeon, P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, Thin Solid Films 155, L1 (1987).
http://dx.doi.org/10.1016/0040-6090(87)90463-9
24.
24.R. Gupta, M. J. Dyer, and W. A. Weimer, J. Appl. Phys. 92, 5264 (2002).
http://dx.doi.org/10.1063/1.1511275
25.
25.T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, Appl. Phys. Lett. 89, 044107 (2006).
http://dx.doi.org/10.1063/1.2234747
26.
26.B. J. Soller and D. G. Hall, J. Opt. Soc. Am. A 18, 2577 (2001).
27.
27.P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, Surf. Sci. 217, 384 (1989).
http://dx.doi.org/10.1016/0039-6028(89)90555-4
28.
28.P. Wurfel, J. Phys. C 15, 3967 (1982).
http://dx.doi.org/10.1088/0022-3719/15/18/012
http://aip.metastore.ingenta.com/content/aip/journal/jap/101/9/10.1063/1.2734885
Loading
/content/aip/journal/jap/101/9/10.1063/1.2734885
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/101/9/10.1063/1.2734885
2007-05-07
2016-08-30

Abstract

Thin-film solar cells have the potential to significantly decrease the cost of photovoltaics. Light trapping is particularly critical in such thin-film crystalline silicon solar cells in order to increase light absorption and hence cell efficiency. In this article we investigate the suitability of localized surface plasmons on silvernanoparticles for enhancing the absorbance of silicon solar cells. We find that surface plasmons can increase the spectral response of thin-film cells over almost the entire solar spectrum. At wavelengths close to the band gap of Si we observe a significant enhancement of the absorption for both thin-film and wafer-based structures. We report a sevenfold enhancement for wafer-based cells at and up to 16-fold enhancement at for thin silicon-on-insulator (SOI) cells, and compare the results with a theoretical dipole-waveguide model. We also report a close to 12-fold enhancement in the electroluminescence from ultrathin SOI light-emitting diodes and investigate the effect of varying the particle size on that enhancement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/101/9/1.2734885.html;jsessionid=c16t4BY3BQ5Trk_ddpPaIaTa.x-aip-live-06?itemId=/content/aip/journal/jap/101/9/10.1063/1.2734885&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/101/9/10.1063/1.2734885&pageURL=http://scitation.aip.org/content/aip/journal/jap/101/9/10.1063/1.2734885'
Right1,Right2,Right3,