1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Effects of clustering on the properties of defects in neutron irradiated silicon
Rent:
Rent this article for
USD
10.1063/1.2769783
/content/aip/journal/jap/102/4/10.1063/1.2769783
http://aip.metastore.ingenta.com/content/aip/journal/jap/102/4/10.1063/1.2769783
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

DLTS of the base collector junction of a transistor using a rate window of , filling pulse width 1 and 10 ms period after neutron damage and 30 m anneals from 350 to 500 K at 0 V bias. Prior to recording the data the junctions were subjected to forward bias for 20 m at 300 K.

Image of FIG. 2.
FIG. 2.

DLTS signal vs filling pulse width measured at the DLTS peak at several temperatures following annealing at 350 K at 0 V. Prior to recording the data the junctions were subjected to forward bias for 20 m at 300 K. The DLTS emission times, (inverse of the rate window) are shown by vertical lines.

Image of FIG. 3.
FIG. 3.

Data taken in the same manner as those of Fig. 2, but after the transistor was annealed at 500 K for 30 m at 0 V.

Image of FIG. 4.
FIG. 4.

DLTS peaks measured at several rate windows after 20 m injection at 300 K. Filling pulses have been chosen to ensure the DLTS signal is saturated. The decline in peak height as the peak temperature increases indicating partial filling of the center.

Image of FIG. 5.
FIG. 5.

Evidence for nonuniform defect creation from MARLOWE calculations of neutron damage before vacancy-interstitial recombination. The recombination is expected to reduce the defect numbers by as much as a factor of 10. Approximately 18 000 vacancy-interstitial pairs in are shown along with a single vacancy cluster in .

Image of FIG. 6.
FIG. 6.

Dashed curve is the solution to the electrostatic cluster potential in the negatively charged region occupied by the defect states [Eq. (3)], and the solid curve is the solution in the region of positively charged shallow donor atoms [Eq. (2)]. Defect states lie inside . The negative-going singularity of Eq. (3) at has been omitted from the plot.

Image of FIG. 7.
FIG. 7.

This figure illustrates changes in the DLTS signal as the temperature and barrier height are changed. The self-consistent electrostatic barrier height is found by equating the temperature-dependent charge density [Eq. (5) shown for 112 and 154 K] to the barrier height obtained from the electrostatic solution [Eq. (4), thin solid line]. In this illustrative calculation we only consider cluster charge from the defect. For the partially filled example shown, the observed DLTS signal is temperature dependent, with the magnitude of decreasing as the temperature increases. Note also that if the defect density decreases and the is partially filled, the magnitude of the observed DLTS signal will increase dramatically.

Image of FIG. 8.
FIG. 8.

Fractional occupancy of the shallow divacancy state computed from Eq. (7) for several defect densities leading to (singly occupied) barrier heights of (a) 80 meV and (b) 50 meV. For comparison, calculated fractional occupancy for the case of a constant capture rate is shown. The electron emission time, , is shown for each temperature.

Image of FIG. 9.
FIG. 9.

Numerically computed fits of Eq. (7) (lines) compared to capture data for a neutron-irradiated sample forward bias annealed at 300 K. The measured electron emission time, , is shown for each temperature. The fits were calculated using single barrier heights (when is singly filled) at 112 and 154 K of 60 and 50 meV, which resulted in equilibrium filling fractions of 0.64 and 0.88, respectively. The value of was at 112 K.

Image of FIG. 10.
FIG. 10.

Mean cluster size following neutron irradiation as a function of number of defects in a cluster as simulated from a binary-collision approximation (MARLOWE).

Image of FIG. 11.
FIG. 11.

Barrier height for the clusters plotted in Fig. 10 as a function of the number of defects in each cluster. Numbers above each histogram bar are a weighting function that consists of the probability of finding a cluster of a particular size times the average number of defects in that cluster.

Image of FIG. 12.
FIG. 12.

Capture data measured at two temperatures following anneals at 350 and 500 K. Vertical lines are the measured electron emission times at the two measurement temperatures, 112 and 154 K. The curved lines are fits to the data using the barrier height distribution shown in Fig. 11.

Image of FIG. 13.
FIG. 13.

Numerically computed fits of Eq. (7) compared to capture data for a neutron-irradiated sample forward bias annealed at 300 K. Both the data (points) and the fits (lines) are normalized to the long pulse width equilibrium values. The measured electron emission time, , is shown for each temperature. For the calculated curves the barrier heights (when VO is neutral) at 79 and 112 K are 25 and 28 meV, respectively. The equilibrium filling fractions are 1.00 for both measurement temperatures. The value of was at 79 K, chosen to match that of Hallen (Ref. 7).

Loading

Article metrics loading...

/content/aip/journal/jap/102/4/10.1063/1.2769783
2007-08-28
2014-04-17
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effects of clustering on the properties of defects in neutron irradiated silicon
http://aip.metastore.ingenta.com/content/aip/journal/jap/102/4/10.1063/1.2769783
10.1063/1.2769783
SEARCH_EXPAND_ITEM