1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Thermodynamics of mono- and di-vacancies in barium titanate
Rent:
Rent this article for
USD
10.1063/1.2801011
/content/aip/journal/jap/102/8/10.1063/1.2801011
http://aip.metastore.ingenta.com/content/aip/journal/jap/102/8/10.1063/1.2801011

Figures

Image of FIG. 1.
FIG. 1.

Stability diagram for cubic barium titanate as determined from density-functional theory calculations. The area confined between points A, B, C, and D is the chemical stability range of . The line through points C and D corresponds to maximally oxygen-rich conditions and an oxygen chemical potential of . Along lines parallel to C–D the oxygen chemical potential is constant. The most negative value of is obtained in the upper right corner of the diagram.

Image of FIG. 2.
FIG. 2.

(Color online) Variation of defect formation energies with Fermi level for representative thermodynamic conditions indicated in Fig. 1. The numbers indicate the charge states. Parallel lines correspond to identical charge states. The solid and dashed lines correspond to mono- and di-vacancies, respectively. The arrows indicate the position of the Fermi level pinning energy under different conditions.

Image of FIG. 3.
FIG. 3.

Transition levels for mono- and di-vacancies in . Only the band edges are shown. The dashed transition levels are positioned inside the valence or the conduction bands (indicated by the light gray shaded areas) and are only included for illustration. The dark gray shaded areas indicate the sum of the extrapolation errors for each transition.

Image of FIG. 4.
FIG. 4.

(Color online) Binding energies for and di-vacancies as a function of Fermi level. The kinks correspond to charge transition points of the isolated defects (compare Fig. 2 and Fig. 3).

Tables

Generic image for table
Table I.

Bulk properties of cubic barium titanate as obtained from experiment and first-principles calculations. U.S.-PP: ultrasoft pseudopotentials; FP-LAPW: full potential-linearized augmented plane waves; TB-LMTO: tight-binding linear muffin-tin orbitals; ASA: atomic sphere approximation; LDA: local-density approximation; GGA: generalized-gradient approximation; PBE: Perdew-Burke-Ernzerhof parameterization of the GGA; : cohesive energy ; : lattice constant ; : equilibrium volume ; , : bulk modulus (GPa) and its pressure derivative; : direct band gap at -point (eV); : indirect band gap measured between points and ; , : effective electron (hole) mass at the -point along in units of the electron mass.

Generic image for table
Table II.

Bulk properties of Ba, Ti and O and their compounds in their respective ground-states. Experimental data from Refs. 64–66. : cohesive energy ; : axial ratio; : dimer bond length ; : enthalpy of formation ; other symbols as in Table I.

Generic image for table
Table III.

Formation energies of mono- and di-vacancies under the chemical conditions indicated in Fig. 1. Note that if and are given is uniquely determined by Eq. (4). The charge state, , of the defect which determines the Fermi level dependence of the formation energies via Eq. (1) is given in the second column. The number of electrons occupying conduction band states and holes occupying valence band states are relevant for the band gap correction via Eq. (2) and are given in the third column where positive and negative values indicate and , respectively. All energies are given in units of eV. The finite-size scaling extrapolation error is given in the last column.

Generic image for table
Table IV.

Calculated migration energies of mono-vacancies in units of electron volts. The temperature ranges above which the defects become mobile are given in the last column. The negative charge states of the titanium vacancy were not considered as already the neutral charge state displays a huge barrier and, following the trends for the barium and oxygen vacancies, the addition of electrons can only be expected to further increase this value.

Loading

Article metrics loading...

/content/aip/journal/jap/102/8/10.1063/1.2801011
2007-10-30
2014-04-17
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermodynamics of mono- and di-vacancies in barium titanate
http://aip.metastore.ingenta.com/content/aip/journal/jap/102/8/10.1063/1.2801011
10.1063/1.2801011
SEARCH_EXPAND_ITEM