Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/103/3/10.1063/1.2836410
1.
1.H. Schmid, Ferroelectrics 162, 317 (1994).
http://dx.doi.org/10.1080/00150199408245083
2.
2.M. Fiebig, J. Phys. D 38, R123 (2005).
http://dx.doi.org/10.1088/0022-3727/38/8/R01
3.
3.W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
4.
4.Magnetoelectric Interaction Phenomena in Crystals, Proceedings of the MEIPIC-2, edited by H. Schmid, Ascona, Switzerland, 13–18 September 1993,
4.[Ferroelectrics 161–162 (1994)].
5.
5.Proceedings of the MEIPIC-3, edited by M. Bichurin, Novgorod, Russia, 16–20 September 1996
5.[Ferroelectrics 204 (1997)].
6.
6.Proceedings of the MEIPIC-4, edited by M. Bichurin, Novgorod, Russia, 16–19 October 2001
6.[Ferroelectrics 279–280 (2002)].
7.
7.Magnetoelectric Interaction Phenomena in Crystals, edited by M. Fiebig, V. V. Eremenko, and I. E. Chupis (Kluwer, Dordrecht, 2004);
7.Proceedings of the MEIPIC-5, Sudak, Ukraine, 21–24 September 2003.
8.
8.N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
http://dx.doi.org/10.1021/jp000114x
9.
9.T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).
http://dx.doi.org/10.1038/nature02018
10.
10.J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
11.
11.T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.257201
12.
12.T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature (London) 430, 541 (2004).
http://dx.doi.org/10.1038/nature02728
13.
13.N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature (London) 429, 392 (2004).
http://dx.doi.org/10.1038/nature02572
14.
14.W. Prellier, M. P. Singh, and P. Murugavel, J. Phys.: Condens. Matter 17, R803 (2005).
http://dx.doi.org/10.1088/0953-8984/17/30/R01
15.
15.S. W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
http://dx.doi.org/10.1038/nmat1804
16.
16.J. van Suchtelen, Philips Res. Rep. 27, 28 (1972).
17.
17.C. W. Nan, Phys. Rev. B 50, 6082 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.6082
18.
18.R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull. 13, 525 (1978).
http://dx.doi.org/10.1016/0025-5408(78)90161-7
19.
19.J. Boomgard, D. R. Terrell, R. A. J. Born, and H. F. J. I. Giller, J. Mater. Sci. 9, 1705 (1974).
http://dx.doi.org/10.1007/BF00540770
20.
20.A. M. J. G. Run, D. R. Terrell, and J. H. Scholing, J. Mater. Sci. 9, 1710 (1974).
http://dx.doi.org/10.1007/BF00540771
21.
21.J. Boomgard, A. M. J. G. Run, and J. Suchtelen, Ferroelectrics 10, 295 (1976).
22.
22.J. Boomgard and R. A. J. Born, J. Mater. Sci. 13, 1538 (1978).
http://dx.doi.org/10.1007/BF00553210
23.
23.G. Harshe, J. P. Dougherty, and R. E. Newnham, Int. J. Appl. Electromagn. Mater. 4, 145 (1993).
24.
24.S. Lopatin, I. Lopatin, and I. Lisnevskaya, Ferroelectrics 162, 63 (1994).
25.
25.T. G. Lupeiko, I. V. Lisnevskaya, M. D. Chkheidze, and B. I. Zvyagintsev, Inorg. Mater. 31, 1245 (1995).
26.
26.M. I. Bichurin, I. A. Kornev, V. M. Petrov, and I. Lisnevskaya, Ferroelectrics 204, 289 (1997).
http://dx.doi.org/10.1080/00150199708222209
27.
27.K. K. Patankar, S. A. Patil, K. V. Sivakumar, R. P. Mahajan, Y. D. Kolekar, and M. B. Kothale, Mater. Chem. Phys. 65, 97 (2000).
http://dx.doi.org/10.1016/S0254-0584(00)00216-9
28.
28.J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, J. Electroceram. 7, 17 (2001).
http://dx.doi.org/10.1023/A:1012210609895
29.
29.K. K. Patankar, R. P. Nipankar, V. L. Mathe, R. P. Mahajan, and S. A. Patil, Ceram. Int. 27, 853 (2001).
http://dx.doi.org/10.1016/S0272-8842(01)00040-2
30.
30.V. L. Mathe, K. K. Patankar, U. V. Jadhav, A. N. Patil, S. D. Lotake, and S. A. Patil, Ceram. Int. 27, 531 (2000).
http://dx.doi.org/10.1016/S0272-8842(00)00114-0
31.
31.G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, Phys. Rev. B 64, 214408 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.214408
32.
32.G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, Phys. Rev. B 65, 134402 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.134402
33.
33.M. I. Bichurin, V. M. Petrov, R. V. Petrov, Y. V. Kiliba, F. I. Bukashev, A. Y. Smirnov, and D. N. Eliseev, Ferroelectrics 280, 365 (2002).
34.
34.M. B. Kothale, K. K. Patankar, S. L. Kadam, V. L. Mathe, A. V. Rao, and B. K. Chougule, Mater. Chem. Phys. 77, 691 (2003).
http://dx.doi.org/10.1016/S0254-0584(02)00135-9
35.
35.G. Srinivasan, R. Hayes, and M. I. Bichurin, Solid State Commun. 128, 261 (2003).
http://dx.doi.org/10.1016/S0038-1098(03)00727-0
36.
36.G. E. Srinivasan, T. Rasmussen, and R. Hayes, Phys. Rev. B 67, 014418 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.014418
37.
37.S. L. Kadam, K. K. Patankar, V. L. Mathe, M. B. Kothale, R. B. Kale, and B. K. Chougule, Mater. Chem. Phys. 78, 684 (2003).
http://dx.doi.org/10.1016/S0254-0584(02)00352-8
38.
38.S. Mazumder and G. S. Bhattacharyya, Ceram. Int. 30, 389 (2004).
http://dx.doi.org/10.1016/S0272-8842(03)00121-4
39.
39.J. Y. Zhai, N. Cai, Z. Shi, Y. H. Lin, and C. W. Nan, J. Phys. D 37, 823 (2004).
http://dx.doi.org/10.1088/0022-3727/37/6/002
40.
40.J. Y. Zhai, N. Cai, Z. Shi, Y. H. Lin, and C. W. Nan, J. Appl. Phys. 95, 5685 (2004).
http://dx.doi.org/10.1063/1.1699499
41.
41.M. Zeng, J. G. Wan, Y. Wang, H. Yu, J.-M. Liu, X. P. Jiang, and C. W. Nan, J. Appl. Phys. 95, 8069 (2004).
http://dx.doi.org/10.1063/1.1739531
42.
42.R. S. Devan, S. A. Lokare, D. R. Patil, S. S. Chougule, Y. D. Kolekar, and B. K. Chougule, J. Phys. Chem. Solids 67, 1524 (2006).
http://dx.doi.org/10.1016/j.jpcs.2006.02.005
43.
43.Y. J. Li, X. M. Chen, Y. Q. Lin, and Y. H. Tang, J. Eur. Ceram. Soc. 26, 2839 (2006).
http://dx.doi.org/10.1016/j.jeurceramsoc.2005.06.028
44.
44.J. P. Zhou, H. C. He, Z. Shi, G. Liu, and C. W. Nan, J. Appl. Phys. 100, 094106 (2006).
http://dx.doi.org/10.1063/1.2358191
45.
45.R. S. Devan, S. B. Deshpande, and B. K. Chougule, J. Phys. D 40, 1864 (2007).
http://dx.doi.org/10.1088/0022-3727/40/7/004
46.
46.S. S. Chougule and B. K. Chougule, Smart Mater. Struct. 16, 493 (2007).
http://dx.doi.org/10.1088/0964-1726/16/2/030
47.
47.J. Ryu, S. Priya, A. V. Carazo, K. Uchino, and H. E. Kim, J. Am. Chem. Soc. 84, 2905 (2001).
48.
48.J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, Jpn. J. Appl. Phys., Part 1 40, 4948 (2001).
http://dx.doi.org/10.1143/JJAP.40.4948
49.
49.S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 83, 2265 (2003).
http://dx.doi.org/10.1063/1.1611276
50.
50.S. X. Dong, J. F. Li, and D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1236 (2003).
http://dx.doi.org/10.1109/TUFFC.2003.1197958
51.
51.S. X. Dong, J. F. Li, and D. Viehland, J. Appl. Phys. 95, 2625 (2004).
http://dx.doi.org/10.1063/1.1644027
52.
52.S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 85, 2307 (2004).
http://dx.doi.org/10.1063/1.1791732
53.
53.S. X. Dong, J. F. Li, and D. Viehland, J. Appl. Phys. 96, 3382 (2004).
http://dx.doi.org/10.1063/1.1781764
54.
54.S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 85, 2307 (2004).
http://dx.doi.org/10.1063/1.1791732
55.
55.S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 85, 3534 (2004).
http://dx.doi.org/10.1063/1.1786631
56.
56.S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 84, 4188 (2004).
http://dx.doi.org/10.1063/1.1756676
57.
57.S. X. Dong, J. Y. Zhai, Z. P. Xing, J. F. Li, and D. Viehland, Appl. Phys. Lett. 86, 102901 (2005).
http://dx.doi.org/10.1063/1.1881784
58.
58.S. X. Dong, J. G. Bai, J. Y. Zhai, J. F. Li, G. Q. Lu, D. Viehland, S. J. Zhang, and T. R. Shrout, Appl. Phys. Lett. 86, 182506 (2005).
http://dx.doi.org/10.1063/1.1923184
59.
59.S. X. Dong, J. Y. Zhai, F. M. Bai, J. F. Li, D. Viehland, and T. A. Lograsso, J. Appl. Phys. 97, 103902 (2005).
http://dx.doi.org/10.1063/1.1899247
60.
60.S. X. Dong, J. Y. Zhai, N. G. Wang, F. M. Bai, J. F. Li, D. Viehland, and T. A. Lograsso, Appl. Phys. Lett. 87, 222504 (2005).
http://dx.doi.org/10.1063/1.2137455
61.
61.S. X. Dong, J. Zhai, J.-F. Li, and D. Viehland, Appl. Phys. Lett. 88, 082907 (2006).
http://dx.doi.org/10.1063/1.2178582
62.
62.S. X. Dong, J. Y. Zhai, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 252904 (2006).
http://dx.doi.org/10.1063/1.2420772
63.
63.S. X. Dong, J. Y. Zhai, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 122903 (2006).
http://dx.doi.org/10.1063/1.2355459
64.
64.S. X. Dong, J. F. Li, and D. Viehland, J. Appl. Phys. 100, 124108 (2006).
http://dx.doi.org/10.1063/1.2402968
65.
65.S. X. Dong, J. Y. Zhai, J. F. Li, D. Viehland, and M. I. Bichurin, Appl. Phys. Lett. 89, 243512 (2006).
http://dx.doi.org/10.1063/1.2404977
66.
66.J. Y. Zhai, J. F. Li, S. X. Dong, D. Viehland, and M. I. Bichurin, J. Appl. Phys. 100, 124509 (2006).
http://dx.doi.org/10.1063/1.2402967
67.
67.P. Li, Y. M. Wen, and L. X. Bian, Appl. Phys. Lett. 90, 022503 (2007).
http://dx.doi.org/10.1063/1.2431469
68.
68.X. M. Yin, N. Zhang, J. C. Bao, Phys. Lett. A 361, 434 (2007).
http://dx.doi.org/10.1016/j.physleta.2006.09.066
69.
69.C. W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y. H. Lin, L. J. Dong, and C. X. Xiong, Appl. Phys. Lett. 81, 3831 (2002).
http://dx.doi.org/10.1063/1.1521247
70.
70.J. G. Wan, J.-M. Liu, H. L. W. Chand, C. L. Choy, G. H. Wang, and C. W. Nan, J. Appl. Phys. 93, 9916 (2003).
http://dx.doi.org/10.1063/1.1577404
71.
71.C. W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, and Y. H. Lin, J. Appl. Phys. 94, 5930 (2003).
http://dx.doi.org/10.1063/1.1614866
72.
72.N. Cai, J. Zhai, C. W. Nan, Y. H. Lin, and Z. Shi, Phys. Rev. B 68, 224103 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.224103
73.
73.N. Cai, C. W. Nan, J. Y. Zhai, and Y. H. Lin, Appl. Phys. Lett. 84, 3516 (2004).
http://dx.doi.org/10.1063/1.1739277
74.
74.Y. H. Lin, N. Cai, J. Y. Zhai, G. Liu, and C. W. Nan, Phys. Rev. B 72, 012405 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.012405
75.
75.C. W. Nan, N. Cai, Z. Shi, J. Zhai, G. Liu, and Y. H. Lin, Phys. Rev. B 71, 014102 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014102
76.
76.Z. Shi, C. W. Nan, J. Zhang, N. Cai, and J. F. Li, Appl. Phys. Lett. 87, 012503 (2005).
http://dx.doi.org/10.1063/1.1991983
77.
77.Z. Shi, C. W. Nan, J. Zhang, J. Ma, and J. F. Li, J. Appl. Phys. 99, 124108 (2006).
http://dx.doi.org/10.1063/1.2208734
78.
78.Z. Shi, J. Ma, Y. H. Lin, and C. W. Nan, J. Appl. Phys. 101, 043902 (2007).
http://dx.doi.org/10.1063/1.2653524
79.
79.H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).
http://dx.doi.org/10.1126/science.1094207
80.
80.H. Zheng, J. Wang, L. Mohaddes-Ardabili, M. Wuttig, L. Salamanca-Riba, D. G. Schlom, and R. Ramesh, Appl. Phys. Lett. 85, 2035 (2004).
http://dx.doi.org/10.1063/1.1786653
81.
81.F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S. Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D. G. Schlom, Y. Suzuki, and R. Ramesh, Nano Lett. 5, 1793 (2005).
http://dx.doi.org/10.1021/nl051406i
82.
82.J. G. Wan, X. W. Wang, Y. J. Wu, M. Zeng, Y. Wang, H. Jiang, W. Q. Zhou, G. H. Wang, and J. M. Liu, Appl. Phys. Lett. 86, 122501 (2005).
http://dx.doi.org/10.1063/1.1889237
83.
83.P. Murugavel, P. Padhan, and W. Prellier, Appl. Phys. Lett. 85, 4992 (2004);
http://dx.doi.org/10.1063/1.1825075
83.P. Murugavel, D. Saurel, W. Prellier, C. Simon, and B. Raveau, Appl. Phys. Lett. 85, 4424 (2004).
http://dx.doi.org/10.1063/1.1811800
84.
84.M. P. Singh, W. Prellier, L. Mechin, C. Simon, and B. Raveau, J. Appl. Phys. 99, 024105 (2006).
http://dx.doi.org/10.1063/1.2161424
85.
85.J. P. Zhou, H. C. He, Z. Shi, and C. W. Nan, Appl. Phys. Lett. 88, 013111 (2006).
http://dx.doi.org/10.1063/1.2162262
86.
86.H. C. He, J. P. Zhou, J. Wang, and C. W. Nan, Appl. Phys. Lett. 89, 052904 (2006).
http://dx.doi.org/10.1063/1.2269705
87.
87.I. Levin, J. Li, J. Slutsker, and A. L. Roytburd, Adv. Mater. (Weinheim, Ger.) 18, 2044 (2006).
http://dx.doi.org/10.1002/adma.200600288
88.
88.H. Zheng, F. Straub, Q. Zhan, P. L. Yang, W. K. Hsieh, F. Zavaliche, Y. H. Chu, U. Dahmen, and R. Ramesh, Adv. Mater. (Weinheim, Ger.) 18, 2747 (2006).
http://dx.doi.org/10.1002/adma.200601215
89.
89.T. Wu, M. A. Zurbuchen, S. Saha, J. Mitchellm and S. K. Streiffer, Phys. Rev. B 73, 134416 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.134416
90.
90.N. Ortega, P. Bhattacharya, and R. S. Katiyar, J. Appl. Phys. 100, 126105 (2006).
http://dx.doi.org/10.1063/1.2400795
91.
91.W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, and N. D. Mathur, Nat. Mater. 6, 348 (2007).
http://dx.doi.org/10.1038/nmat1886
92.
92.Y. G. Ma, W. N. Cheng, M. Ning, and C. K. Ong, Appl. Phys. Lett. 90, 152911 (2007).
http://dx.doi.org/10.1063/1.2723645
93.
93.H. C. He, J. P. Zhou, J. Wang, and C. W. Nan, Adv. Funct. Mater. 17, 1333 (2007).
http://dx.doi.org/10.1002/adfm.200600476
94.
94.R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
http://dx.doi.org/10.1038/nmat1805
95.
95.C. W. Nan, Prog. Mater. Sci. 37, 1 (1993).
http://dx.doi.org/10.1016/0079-6425(93)90004-5
96.
96.C. W. Nan and D. R. Clarke, J. Am. Ceram. Soc. 80, 1333 (1997).
97.
97.Y. Benveniste, Phys. Rev. B 51, 16424 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.16424
98.
98.I. Getman, Ferroelectrics 162, 45 (1994).
99.
99.T. Y. Chen, J. Mech. Phys. Solids 45, 385 (1997);
http://dx.doi.org/10.1016/S0022-5096(96)00092-0
99.T. Y. Chen and S. C. Chiang, Acta Mech. 121, 79 (1997).
http://dx.doi.org/10.1007/BF01262524
100.
100.J. S. Lee, J. G. Boyd, and D. C. Lagoudas, Int. J. Eng. Sci. 43, 790 (2005).
http://dx.doi.org/10.1016/j.ijengsci.2005.01.004
101.
101.J. Y. Li and M. L. Dunn, Philos. Mag. A 77, 1341 (1998).
http://dx.doi.org/10.1080/014186198254047
102.
102.J. Y. Li, Int. J. Eng. Sci. 38, 1993 (2000);
http://dx.doi.org/10.1016/S0020-7225(00)00014-8
102.J. Y. Li,Q. J. Mech. Appl. Math. 56, 35 (2003).
http://dx.doi.org/10.1093/qjmam/56.1.35
103.
103.S. Srinivas and J. Y. Li, Acta Mater. 53, 4135 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.05.014
104.
104.S. Srinivas, J. Y. Li, and Y. C. Zhou, J. Appl. Phys. 99, 043905 (2006).
http://dx.doi.org/10.1063/1.2173035
105.
105.L. J. Li and J. Y. Li, Phys. Rev. B 73, 184416 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.184416
106.
106.J. H. Huang and W. S. Kuo, J. Appl. Phys. 81, 1378 (1997).
http://dx.doi.org/10.1063/1.363874
107.
107.J. H. Huang, Phys. Rev. B 58, 12 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.12
108.
108.T. L. Wu and J. H. Huang, Int. J. Solids Struct. 37, 2981 (2000).
http://dx.doi.org/10.1016/S0020-7683(99)00116-X
109.
109.E. Pan, Z. Angew. Math. Phys. 53, 815 (2002).
110.
110.D. A. Filippov, Tech. Phys. Lett. 30, 351 (2004).
http://dx.doi.org/10.1134/1.1760852
111.
111.H. T. Huang and L. M. Zhou, J. Phys. D 37, 3361 (2004).
http://dx.doi.org/10.1088/0022-3727/37/24/002
112.
112.M. I. Bichurin, V. M. Petrov, O. V. Ryabkov, S. V. Averkin, and G. Srinivasan, Phys. Rev. B 72, 060408 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.060408
113.
113.Y. Zhou and F. G. Shin, J. Appl. Phys. 100, 043910 (2006).
http://dx.doi.org/10.1063/1.2245194
114.
114.C. W. Nan, M. Li, and J. H. Huang, Phys. Rev. B 63, 144415 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.144415
115.
115.C. W. Nan, M. Li, X. Feng, and S. Yu, Appl. Phys. Lett. 78, 2527 (2001).
http://dx.doi.org/10.1063/1.1367293
116.
116.K. Mori and M. Wuttig, Appl. Phys. Lett. 81, 100 (2002).
http://dx.doi.org/10.1063/1.1491006
117.
117.C. W. Nan, G. Liu, Y. H. Lin, and H. Chen, Phys. Rev. Lett. 94, 197203 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.197203
118.
118.G. Liu, C. W. Nan, and J. Sun, Acta Mater. 54, 917 (2006);
http://dx.doi.org/10.1016/j.actamat.2005.10.020
118.G. Liu, C. W. Nan, Z. K. Xu, and H. Chen, J. Phys. D 38, 2321 (2005).
http://dx.doi.org/10.1088/0022-3727/38/14/005
119.
119.C. G. Duan, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 97, 047201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.047201
120.
120.J. X. Zhang, Y. L. Li, D. G. Schlom, L. Q. Chen, F. Zavaliche, R. Ramesh, and Q. X. Jia, Appl. Phys. Lett. 90, 052909 (2007).
http://dx.doi.org/10.1063/1.2431574
121.
121.X. Lu, B. Wang, Y. Zheng, and E. Ryba, Appl. Phys. Lett. 90, 133124 (2007);
http://dx.doi.org/10.1063/1.2717585
121.X. Lu, B. Wang, Y. Zheng, and E. Ryba,J. Phys. D 40, 1614 (2007).
http://dx.doi.org/10.1088/0022-3727/40/6/004
122.
122.C. W. Nan, J. Appl. Phys. 82, 5268 (2002).
http://dx.doi.org/10.1063/1.366401
123.
123.R. Hill, J. Mech. Phys. Solids 12, 199 (1964).
http://dx.doi.org/10.1016/0022-5096(64)90019-5
124.
124.M. Avellaneda and G. Harshe, J. Intell. Mater. Syst. Struct. 5 501 (1994).
http://dx.doi.org/10.1177/1045389X9400500406
125.
125.M. I. Bichurin, V. M. Petrov, and G. Srinivasan, J. Appl. Phys. 92, 7681 (2002);
http://dx.doi.org/10.1063/1.1522834
125.M. I. Bichurin, V. M. Petrov, and G. Srinivasan,Phys. Rev. B 68, 054402 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.054402
126.
126.M. I. Bichurin and V. M. Petrov, Sov. Phys. Tech. Phys. 33, 1389 (1989).
127.
127.M. I. Bichurin, V. M. Petrov, and Y. V. Kiliba, Phys. Rev. B 66, 134404 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.134404
128.
128.M. I. Bichurin, V. M. Petrov, and I. A. Kornev, Ferroelectrics 280, 353 (2002).
http://dx.doi.org/10.1080/00150190211522
129.
129.M. I. Bichurin, D. A. Filippov, and V. M. Petrov, Phys. Rev. B 68, 132408 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.132408
130.
130.D. A. Filippov, M. I. Bichurin, and V. M. Petrov, Tech. Phys. Lett. 30, 6 (2004).
http://dx.doi.org/10.1134/1.1646700
131.
131.M. I. Bichurin and V. M. Petrov, Ferroelectrics 162, 33 (1994).
http://dx.doi.org/10.1080/00150199408245087
132.
132.X. M. Chen, Y. H. Tang, and I. W. Chen, J. Appl. Phys. 96, 6520 (2004).
http://dx.doi.org/10.1063/1.1809771
133.
133.Y. H. Tang, X. M. Chen, and Y. J. Li, Mater. Sci. Eng., B 116, 150 (2005).
http://dx.doi.org/10.1016/j.mseb.2004.09.026
134.
134.K. K. Patankar, V. L. Mathe, and A. N. Patil, J. Electroceram. 6, 115 (2001);
http://dx.doi.org/10.1023/A:1011452616738
134.V. L. Mathe, K. K. Patankar, and U. V. Jadhav, Ceram. Int. 27, 531 (2001).
http://dx.doi.org/10.1016/S0272-8842(00)00114-0
135.
135.K. K. Patankar, V. L. Mathe, and R. P. Mahajan, Mater. Chem. Phys. 72, 23 (2001);
http://dx.doi.org/10.1016/S0254-0584(01)00307-8
135.K. K. Patankar, P. D. Dombale, and V. L. Mathe, Mater. Sci. Eng., B 87, 53 (2001).
http://dx.doi.org/10.1016/S0921-5107(01)00695-X
136.
136.S. L. Kadam, K. K. Patankar, and V. L. Mathe, J. Electroceram. 9, 193 (2002);
http://dx.doi.org/10.1023/A:1023217309812
136.S. L. Kadam, K. K. Patankar, and V. L. Mathe,Mater. Chem. Phys. 78, 684 (2003).
http://dx.doi.org/10.1016/S0254-0584(02)00352-8
137.
137.S. R. Kulkarni, C. M. Kanamadi, and K. K. Patankar, J. Mater. Sci. 40, 5691 (2005);
http://dx.doi.org/10.1007/s10853-005-1136-3
137.C. M. Kanamadi and K. K. Chougule, J. Electroceram. 15, 123 (2005).
http://dx.doi.org/10.1007/s10832-005-1356-6
138.
138.Y. R. Dai, P. Bao, and J. S. Zhu, J. Appl. Phys. 39, 1209 (2003).
http://dx.doi.org/10.1063/1.1656227
139.
139.M. E. Botello-Zubiate, D. Bueno-Baques, and J. D. Vaquerizo, Integr. Ferroelectr. 83, 33 (2006).
140.
140.C. M. Kanamadi, L. B. Pujari, and B. K. Chougule, J. Magn. Magn. Mater. 295, 139 (2005).
http://dx.doi.org/10.1016/j.jmmm.2005.01.006
141.
141.M. Zeng, J. G. Wan, Y. Wang, and J. M. Liu, J. Appl. Phys. 95, 8069 (2004).
http://dx.doi.org/10.1063/1.1739531
142.
142.R. A. Islam and S. Priya, Jpn. J. Appl. Phys., Part 2 45, L128 (2006).
http://dx.doi.org/10.1143/JJAP.45.L128
143.
143.V. M. Petrov, G. Srinivasan, V. Laletsin, and M. I. Bichurin, Phys. Rev. B 75, 174442 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.174442
144.
144.S. Q. Ren, L. Q. Weng, and S. H. Song, J. Mater. Sci. 40, 4375 (2005).
http://dx.doi.org/10.1007/s10853-005-1057-1
145.
145.G. Srinivasan, C. P. DeVreugd, and C. S. Flattery, Appl. Phys. Lett. 85, 2550 (2004).
http://dx.doi.org/10.1063/1.1795365
146.
146.Q. H. Jiang, Z. J. Shen, J. P. Zhou, Z. Shi, and C. W. Nan, J. Eur. Ceram. Soc. 27, 279 (2007).
http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.041
147.
147.Z. J. Shen and M. Nygren, Chem. Rec. 5, 173 (2005).
http://dx.doi.org/10.1002/tcr.20043
148.
148.L. Q. Weng, Y. D. Fu, and S. H. Song, Scr. Mater. 56, 465 (2007).
http://dx.doi.org/10.1016/j.scriptamat.2006.11.032
149.
149.J. G. Wan, H. Zhang, and X. W. Wang, Appl. Phys. Lett. 89, 122914 (2006).
http://dx.doi.org/10.1063/1.2357589
150.
150.V. Corral-Flores, D. Bueno-Baques, and D. Carrillo-Flores, J. Appl. Phys. 99, 08J503 (2006).
http://dx.doi.org/10.1063/1.2165147
151.
151.R. A. Islam and S. Priya, Appl. Phys. Lett. 89, 152911 (2006);
http://dx.doi.org/10.1063/1.2361180
151.N. Zhang, W. Ke, and T. Schneider, J. Phys.: Condens. Matter 18, 11013 (2006).
http://dx.doi.org/10.1088/0953-8984/18/48/029
152.
152.I. V. Lisnevskaya, I. A. Bobrova, and E. A. Bikyashev, Inorg. Mater. 42, 1147 (2006).
http://dx.doi.org/10.1134/S0020168506100177
153.
153.G. Srinivasan, I. V. Zavislyak, and A. S. Tatarenko, Appl. Phys. Lett. 89, 152508 (2006).
http://dx.doi.org/10.1063/1.2360901
154.
154.C. W. Nan, Y. H. Lin, and J. H. Huang, Ferroelectrics 280, 319 (2002).
http://dx.doi.org/10.1080/00150190214796
155.
155.C. W. Nan, G. Liu, and Y. H. Lin, Appl. Phys. Lett. 83, 4366 (2003).
http://dx.doi.org/10.1063/1.1630157
156.
156.S. X. Dong, J. F. Li, and D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1253 (2003).
http://dx.doi.org/10.1109/TUFFC.2003.1244741
157.
157.S. X. Dong, J. F. Li, and D. Viehland, J. Mater. Sci. 41, 97 (2006).
http://dx.doi.org/10.1007/s10853-005-5930-8
158.
158.S. X. Dong, J. R. Cheng, J. F. Li, and D. Viehland, Appl. Phys. Lett. 83, 4812 (2003).
http://dx.doi.org/10.1063/1.1631756
159.
159.Y. X. Liu, J. G. Wan, J. M. Liu, and C. W. Nan, J. Appl. Phys. 94, 5111 (2003);
http://dx.doi.org/10.1063/1.1610806
159.Y. X. Liu, J. G. Wan, J. M. Liu, and C. W. Nan, J. Appl. Phys.94, 5118 (2003).
http://dx.doi.org/10.1063/1.1613811
160.
160.G. Liu, C. W. Nan, N. Cai, and Y. H. Lin, J. Appl. Phys. 95, 2660 (2004);
http://dx.doi.org/10.1063/1.1645648
160.G. Liu,Int. J. Solids Struct. 41, 4423 (2004).
http://dx.doi.org/10.1016/j.ijsolstr.2004.03.022
161.
161.Y. M. Jia, S. W. Or, and H. L. Chan, Appl. Phys. Lett. 88, 242902 (2006).
http://dx.doi.org/10.1063/1.2212054
162.
162.H. Yu, M. Zeng, and Y. Wang, Appl. Phys. Lett. 86, 032508 (2005);
http://dx.doi.org/10.1063/1.1854736
162.N. Zhang, X. M. Yin, and W. Ke, J. Phys.: Condens. Matter 18, 10965 (2006);
http://dx.doi.org/10.1088/0953-8984/18/48/023
162.S. S. Guo, S. G. Lu, Z. Xu, X. Z. Zhao, and S. Or, Appl. Phys. Lett. 88, 182906 (2006).
http://dx.doi.org/10.1063/1.2200389
163.
163.J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J.-M. Liu, Appl. Phys. Lett. 86, 202504 (2005).
http://dx.doi.org/10.1063/1.1935040
164.
164.J. Y. Zhai, Z. Xing, S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 88, 062510 (2006).
http://dx.doi.org/10.1063/1.2172706
165.
165.S. X. Dong, J. F. Li, and D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 794 (2004).
166.
166.S. X. Dong, J. Y. Zhai, F. Bai, J. F. Li, and D. Viehland, Appl. Phys. Lett. 87, 062502 (2005).
http://dx.doi.org/10.1063/1.2007868
167.
167.J. Y. Zhai, S. X. Dong, Z. P. Xing, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 083507 (2006).
http://dx.doi.org/10.1063/1.2337996
168.
168.K. Zhao, K. Chen, Y. R. Dai, J. G. Wan, and J. S. Zhu, Appl. Phys. Lett. 87, 162901 (2005).
http://dx.doi.org/10.1063/1.2099545
169.
169.V. M. Laletin, N. Paddubnaya, and G. Srinivasan, Appl. Phys. Lett. 87, 222507 (2005).
http://dx.doi.org/10.1063/1.2137450
170.
170.S. N. Babu, T. Bhimasankaram, and S. V. Suryanarayana, Bull. Mater. Sci. 28, 419 (2005).
http://dx.doi.org/10.1007/BF02711230
171.
171.Y. M. Jia, S. W. Or, and K. H. Lam, Appl. Phys. A: Mater. Sci. Process. 86, 525 (2007).
http://dx.doi.org/10.1007/s00339-006-3805-8
172.
172.Z. Shi, C. W. Nan, J. M. Liu, and M. I. Bichurin, Phys. Rev. B 70, 134417 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.134417
173.
173.D. A. Filippov, M. I. Bichurin, C. W. Nan, and J. M. Liu, J. Appl. Phys. 97, 113910 (2005).
http://dx.doi.org/10.1063/1.1929865
174.
174.S. X. Dong, J. Y. Zhai, J. F. Li, and D. Viehland, J. Appl. Phys. 100, 124108 (2006).
http://dx.doi.org/10.1063/1.2402968
175.
175.J. Slutsker, I. Levin, J. H. Li, A. Artemev, and A. L. Royburd, Phys. Rev. B 73, 184127 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.184127
176.
176.F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M. P. Cruz, P.-L. Yang, D. Hao, and R. Ramesh, Nano Lett. 7, 1586 (2007).
http://dx.doi.org/10.1021/nl070465o
177.
177.C. Y. Deng, Y. Zhang, J. Ma, Y. H. Lin, and C. W. Nan, J. Appl. Phys. 102, 074114 (2007).
178.
178.C. Thiele, K. Dorr K, O. Bilani O, J. Roedel, and L. Schultz, Phys. Rev. B 75, 054408 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.054408
179.
179.G. Srinivasan, C. P. De Vreugd, and M. I. Bichurin, Appl. Phys. Lett. 86, 222506 (2005);
http://dx.doi.org/10.1063/1.1943491
179.R. V. Chopdekar and Y. Suzuki, Appl. Phys. Lett. 89, 182506 (2006).
http://dx.doi.org/10.1063/1.2370881
180.
180.V. M. Petrov, G. Srinivasan, M. I. Bichurin, and A. Gupta, Phys. Rev. B 75, 224407 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.224407
181.
181.L. P. M. Bracke and R. G. van Vlite, Int. J. Electron. 51, 255 (1981);
http://dx.doi.org/10.1080/00207218108901330
181.J. L. Prieto, C. Aroca, E. Lopez, M. C. Sanchez, and P. Sanchez, J. Magn. Magn. Mater. 215, 756 (2000);
http://dx.doi.org/10.1016/S0304-8853(00)00279-1
181.E. Quandt, S. Stein, and M. Wuttig, IEEE Trans. Magn. 41, 3667 (2005);
http://dx.doi.org/10.1109/TMAG.2005.854793
181.R. Bergs, R. A. Islam, and M. Vickers, J. Appl. Phys. 101, 024108 (2007).
http://dx.doi.org/10.1063/1.2427095
182.
182.J. G. Wan, J. M. Liu, G. H. Wang, and C. W. Nan, Appl. Phys. Lett. 88, 182505 (2006).
http://dx.doi.org/10.1063/1.2200767
183.
183.Z. Huang, J. Appl. Phys. 100, 114104 (2006).
http://dx.doi.org/10.1063/1.2388125
184.
184.M. I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan, Phys. Rev. B 64, 094409 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.094409
185.
185.S. Shastry, G. Srinivasan, M. I. Bichurin, V. M. Petrov, and A. S. Tatarenko, Phys. Rev. B 70, 064416 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.064416
186.
186.M. I. Bichurin, R. V. Petrov, and Y. V. Kiliba, Ferroelectrics 204, 311 (1997).
http://dx.doi.org/10.1080/00150199708222211
187.
187.A. S. Tatarenko, M. I. Bichurin, and G. Srinivasan, Electron. Lett. 41, 596 (2005).
http://dx.doi.org/10.1049/el:20050925
188.
188.Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett. 87, 103502 (2005);
http://dx.doi.org/10.1063/1.2037860
188.Y. K. Fetisov, and G. Srinivasan,Electron. Lett. 41, 1066 (2005).
http://dx.doi.org/10.1049/el:20051653
189.
189.A. A. Semenov, S. F. Karmanenkov, V. E. Demidov, B. A. Kalinikos, G. Srinivasan, A. N. Slavin, and J. V. Mantese, Appl. Phys. Lett. 88, 033503 (2006).
http://dx.doi.org/10.1063/1.2166489
190.
190.Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett. 88, 143503 (2006).
http://dx.doi.org/10.1063/1.2191950
191.
191.A. S. Tatarenko, G. Srinivasan, and M. I. Bichurin, Appl. Phys. Lett. 88, 183507 (2006);
http://dx.doi.org/10.1063/1.2198111
191.A. S. Tatarenko, V. Gheevarughese, and G. Srinivasan, Electron. Lett. 42, 540 (2006).
http://dx.doi.org/10.1049/el:20060167
192.
192.A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, G. Srinivasan, A. N. Slavin, and J. V. Mantese, Electron. Lett. 42, 641 (2006).
http://dx.doi.org/10.1049/el:20060164
193.
193.G. Srinivasan and Y. K. Fetisov, Integr. Ferroelectr. 83, 89 (2006).
194.
194.A. B. Ustinov, V. S. Tiberkevich, G. Srinivasan, A. N. Slavin, A. A. Semenov, S. F. Kamanenko, B. A. Kalinikos, J. V. Mantese, and R. Ramer, J. Appl. Phys. 100, 093905 (2006).
http://dx.doi.org/10.1063/1.2372575
195.
195.G. Srinivasan and Y. K. Fetisov, Ferroelectrics 342, 65 (2006).
http://dx.doi.org/10.1080/00150190600946195
196.
196.N. Setter and R. Waser, Acta Mater. 48, 151 (2000).
http://dx.doi.org/10.1016/S1359-6454(99)00293-1
197.
197.J. Ma, Z. Shi, and C. W. Nan, Adv. Mater. (Weinheim, Ger.) 19, 2571 (2007).
http://dx.doi.org/10.1002/adma.200700330
198.
198.A. Figotin and I. Vitebskiy, Phys. Rev. E 63, 066609 (2001);
http://dx.doi.org/10.1103/PhysRevE.63.066609
198.A. Figotin and I. Vitebskiy, Phys. Rev. E68, 036609 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.036609
199.
199.M. P. Singh and W. Prellier, Philos. Mag. Lett. 87, 211 (2007).
http://dx.doi.org/10.1080/09500830701253185
http://aip.metastore.ingenta.com/content/aip/journal/jap/103/3/10.1063/1.2836410
Loading
/content/aip/journal/jap/103/3/10.1063/1.2836410
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/103/3/10.1063/1.2836410
2008-02-05
2016-08-25

Abstract

Multiferroic magnetoelectric materials, which simultaneously exhibit ferroelectricity and ferromagnetism, have recently stimulated a sharply increasing number of research activities for their scientific interest and significant technological promise in the novel multifunctional devices. Natural multiferroic single-phase compounds are rare, and their magnetoelectric responses are either relatively weak or occurs at temperatures too low for practical applications. In contrast, multiferroic composites, which incorporate both ferroelectric and ferri-/ferromagnetic phases, typically yield giant magnetoelectric coupling response above room temperature, which makes them ready for technological applications. This review of mostly recent activities begins with a brief summary of the historical perspective of the multiferroic magnetoelectric composites since its appearance in 1972. In such composites the magnetoelectric effect is generated as a product property of a magnetostrictive and a piezoelectric substance. An electric polarization is induced by a weak ac magnetic field oscillating in the presence of a dc bias field, and/or a magnetization polarization appears upon applying an electric field. So far, three kinds of bulk magnetoelectric composites have been investigated in experimental and theoretical, i.e., composites of (a) ferrite and piezoelectricceramics (e.g., lead zirconate titanate), (b) magnetic metals/alloys (e.g., Terfenol-D and Metglas) and piezoelectricceramics, and (c) Terfenol-D and piezoelectricceramics and polymer. The elastic coupling interaction between the magnetostrictive phase and piezoelectric phase leads to giant magnetoelectric response of these magnetoelectric composites. For example, a Metglas/lead zirconate titanate fiber laminate has been found to exhibit the highest magnetoelectric coefficient, and in the vicinity of resonance, its magnetoelectric voltage coefficient as high as orders has been achieved, which exceeds the magnetoelectric response of single-phase compounds by many orders of magnitude. Of interest, motivated by on-chip integration in microelectronic devices, nanostructured composites of ferroelectric and magnetic oxides have recently been deposited in a film-on substrate geometry. The coupling interaction between nanosized ferroelectric and magnetic oxides is also responsible for the magnetoelectric effect in the nanostructures as was the case in those bulk composites. The availability of high-quality nanostructured composites makes it easier to tailor their properties through epitaxial strain, atomic-level engineering of chemistry, and interfacial coupling. In this review, we discuss these bulk and nanostructured magnetoelectric composites both in experimental and theoretical. From application viewpoint, microwave devices, sensors, transducers, and heterogeneous read/write devices are among the suggested technical implementations of the magnetoelectric composites. The review concludes with an outlook on the exciting future possibilities and scientific challenges in the field of multiferroic magnetoelectric composites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/103/3/1.2836410.html;jsessionid=J7td0b4zNfsjA3RS2RqkQxHh.x-aip-live-03?itemId=/content/aip/journal/jap/103/3/10.1063/1.2836410&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/103/3/10.1063/1.2836410&pageURL=http://scitation.aip.org/content/aip/journal/jap/103/3/10.1063/1.2836410'
Right1,Right2,Right3,