1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Nucleation energetics during homogeneous solidification in elemental metallic liquids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/104/3/10.1063/1.2961329
1.
1.F. H. Ludlam, Nature (London) 177, 321 (1956).
http://dx.doi.org/10.1038/177321a0
2.
2.F. Franks, J. Darlington, T. Schenz, S. F. Mathias, L. Slade, and H. Levine, Nature (London) 325, 146 (1987).
http://dx.doi.org/10.1038/325146a0
3.
3.R. F. Wood, D. H. Lowndes, and J. Narayan, Appl. Phys. Lett. 44, 770 (1984).
http://dx.doi.org/10.1063/1.94912
4.
4.S. Vaddiraju, A. Mohite, A. Chin, M. Meyyappan, G. Sumanasekera, B. Alphenaar, and M. Sunkara, Nano Lett. 5, 1625 (2005).
http://dx.doi.org/10.1021/nl0505804
5.
5.D. Bera, S. Kuiry, and S. Seal, JOM 56, 49 (2004).
http://dx.doi.org/10.1007/s11837-004-0073-y
6.
6.P. Muralt, J. Appl. Phys. 100, 051605 (2006).
http://dx.doi.org/10.1063/1.2337362
7.
7.A. Gangopadhyay, H. Krishna, C. Favazza, C. Miller, and R. Kalyanaraman, Nanotechnology 18, 485606 (2007).
http://dx.doi.org/10.1088/0957-4484/18/48/485606
8.
8.D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (Chapman and Hall, London, 1992).
9.
9.J. Christian, The Theory of Transformations in Metals and Alloys: An Advanced Textbook in Physical Metallurgy (Pergamon, Oxford, 1965).
10.
10.K. F. Kelton, Crystal Nucleation in Liquids and Gases, Advances in Research and Applications Vol. 45 (Academic, New York, 1991), Chap. 2, pp. 75178.
11.
11.B. -G. Liu, J. Wu, E. G. Wang, and Z. Zhang, Phys. Rev. Lett. 83, 1195 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1195
12.
12.D. M. Sadler and G. H. Gilmer, Phys. Rev. Lett. 56, 2708 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.2708
13.
13.R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, Phys. Rev. B 65, 224113 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.224113
14.
14.R. Lopez, L. C. Feldman, and J. R. F. Haglund, Phys. Rev. Lett. 93, 177403 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.177403
15.
15.S. -N. Luo and T. J. Ahrens, Appl. Phys. Lett. 82, 1836 (2003).
http://dx.doi.org/10.1063/1.1563046
16.
16.X. -M. Bai and M. Li, Phys. Rev. B 72, 052108 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.052108
17.
17.D. G. Fahrenheit, Philos. Trans. R. Soc. London 33, 78 (1724).
18.
18.D. Turnbull, J. Appl. Phys. 21, 1022 (1950).
http://dx.doi.org/10.1063/1.1699435
19.
19.D. Turnbull and R. E. Cech, J. Appl. Phys. 21, 804 (1950).
http://dx.doi.org/10.1063/1.1699763
20.
20.B. Vinet, L. Cortella, J. J. Favier, and P. Desre, Appl. Phys. Lett. 58, 97 (1991).
http://dx.doi.org/10.1063/1.104403
21.
21.B. Vinet, Int. J. Thermophys. 20, 1061 (1999).
http://dx.doi.org/10.1023/A:1022646602324
22.
22.P. G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, 1996), Chap. 3, pp. 147234.
23.
23.A. T. Dinsdale, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 15, 317 (1991).
http://dx.doi.org/10.1016/0364-5916(91)90030-N
24.
24.Smithells Metals Reference Book, 8th ed., edited by W. Gale and T. Totemeier (Elsevier, New York, 2004).
25.
25.A. Cavagna, A. Attanasi, and J. Lorenzana, Phys. Rev. Lett. 95, 115702 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.115702
26.
26.A. V. Gorshkov, Inorg. Mater. 36, 218 (2000).
27.
27.S. Blair, Int. Mater. Rev. 52, 323 (2007).
28.
28.T. Scopigno, U. Balucani, G. Ruocco, and F. Sette, Phys. Rev. E 65, 031205 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.031205
29.
29.W. E. Frazier, “Empirical and Semi-Empirical Relationships of Liquid-Vapor, Solid-Vapor, and Solid-Liquid Surface Energies,” Naval Air Warfare Center, Aircraft Division Warminster, Technical Report No. 18974-0591, 1993.
30.
30.P. -F. Paradis, T. Ishikawa, and S. Yoda, Int. J. Thermophys. 23, 555 (2002).
http://dx.doi.org/10.1023/A:1015169721771
31.
31.P. -F. Paradis, T. Ishikawa, and S. Yoda, J. Math. Sci. (N.Y.) 36, 5125 (2001).
http://aip.metastore.ingenta.com/content/aip/journal/jap/104/3/10.1063/1.2961329
Loading
/content/aip/journal/jap/104/3/10.1063/1.2961329
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/104/3/10.1063/1.2961329
2008-08-01
2014-11-27

Abstract

The solidification of a liquid by nucleation is an important first order phase transition process. It is known that in order for elemental liquids to solidify homogeneously, it is necessary to supercool the liquid to a characteristic temperature below the thermodynamic melting point . Approximately 60 years ago Turnbull [J. Appl. Phys.21, 1022 (1950)] established the empirical rule that is approximately given by for several elemental metallic liquids. We show here that the magnitude of and for the metals can be accurately predicted from classical nucleation theory (CNT) provided the excess volume resulting from the density difference between liquid and solid be accounted for. Specifically, the density change accompanying the formation of a microscopic nucleus of the solid from the liquid results in a volume change in the surrounding liquid. When this is included in the free energy calculations within CNT, the resulting predictions for and for several metals with ranging from to 2900 K are in very good agreement with experimental measurements. This theory also shows that there is a universal character in the minimum nucleation barrier energy and the critical radius. The minimum barrier energy occurs at temperature for all the elemental liquids investigated, while the temperature dependencies of the barrier energy and the critical radius appear identical when expressed as a function of the scaled temperature .

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/104/3/1.2961329.html;jsessionid=d3hl2ms5hrs2.x-aip-live-06?itemId=/content/aip/journal/jap/104/3/10.1063/1.2961329&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nucleation energetics during homogeneous solidification in elemental metallic liquids
http://aip.metastore.ingenta.com/content/aip/journal/jap/104/3/10.1063/1.2961329
10.1063/1.2961329
SEARCH_EXPAND_ITEM