1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Numerical solution of shock and ramp compression for general material properties
Rent:
Rent this article for
USD
10.1063/1.2975338
/content/aip/journal/jap/104/7/10.1063/1.2975338
http://aip.metastore.ingenta.com/content/aip/journal/jap/104/7/10.1063/1.2975338

Figures

Image of FIG. 1.
FIG. 1.

Principal isentrope and shock Hugoniot for air (perfect gas): numerical calculations for general material models, compared to analytic solutions.

Image of FIG. 2.
FIG. 2.

Shock Hugoniot for Al in pressure-temperature space, for different representations of the EOS.

Image of FIG. 3.
FIG. 3.

Principal adiabat and shock Hugoniot for Be in normal stress-compression space, neglecting strength (dashed), for Steinberg–Guinan strength (solid), and for elastic-perfectly plastic with (dotted).

Image of FIG. 4.
FIG. 4.

Principal adiabat and shock Hugoniot for Be in shock speed-normal stress space, neglecting strength (dashed), for Steinberg–Guinan strength (solid), and for elastic-perfectly plastic with (dotted).

Image of FIG. 5.
FIG. 5.

Principal adiabat, shock Hugoniot, and release adiabat for Be in normal stress-temperature space, neglecting strength (dashed), for Steinberg–Guinan strength (solid), and for elastic-perfectly plastic with (dotted).

Image of FIG. 6.
FIG. 6.

Demonstration of shock Hugoniot solution across a phase boundary: shock melting of Al, for different initial porosities.

Image of FIG. 7.
FIG. 7.

Wave interactions for the impact of a flat projectile moving from left to right with a stationary target. The dashed arrows are a guide to the sequence of states. For a projectile moving from right to left, the construction is the mirror image reflected in the normal stress axis.

Image of FIG. 8.
FIG. 8.

Wave interactions for the release of a shocked state (shock moving from left to right) into a stationary “window” material to its right. The release state depends whether the window has a higher or lower shock impedance than the shocked material. The dashed arrows are a guide to the sequence of states. For a shock moving from right to left, the construction is the mirror image reflected in the normal stress axis.

Image of FIG. 9.
FIG. 9.

Wave interactions for the release of a shocked state by tension induced as materials try to separate in opposite directions when joined by a bonded interface. Material damage, spall, and separation are neglected: the construction shows the maximum tensile stress possible. For general material properties, e.g., if plastic flow is included, the stress maximum tensile stress is not just the negative of the initial shock stress. The dashed arrows are a guide to the sequence of states. The graph shows the initial state after an impact by a projectile moving from right to left; for a shock moving from right to left, the construction is the mirror image reflected in the normal stress axis.

Image of FIG. 10.
FIG. 10.

Schematic of uniaxial wave interactions induced by the impact of a flat projectile with a composite target.

Image of FIG. 11.
FIG. 11.

Hydrocode simulation of Al projectile at 3.6 km/s impacting a Mo target with a LiF release window, after impact. Structures on the waves are elastic precursors.

Tables

Generic image for table
Table I.

Interface to material models required for explicit forward-time continuum dynamics simulations. Parentheses in the interface calls denote functions, e.g., “stress (state)” for “stress as a function of the instantaneous, local state.” The evolution functions are shown in the operator-split structure that is most robust for explicit, forward-time numerical solutions, and can also be used for calculations of the shock Hugoniot and ramp compression. Checks for self-consistency include that mass density is positive, volume or mass fractions of components of a mixture add up to one, etc.

Generic image for table
Table II.

Examples of types of material model, distinguished by different structures in the state vector. The symbols are : mass density; : specific internal energy, : temperature, : volume fraction, : mass fraction, : stress deviator, : fraction of plastic work converted to heat, : shear modulus, : elastic and plastic parts of strain rate deviator, : scalar equivalent plastic strain, : factor in effective strain magnitude. Reacting solid explosives can be represented as heterogeneous mixtures, one component being the reacted products; reaction, a process of internal evolution, transfers material from unreacted to reacted components. Gas-phase reaction can be represented as a homogeneous mixture, reactions transferring mass between components representing different types of molecule. Symmetric tensors such as the stress deviator are represented more compactly by their six unique upper triangular components, e.g., using Voigt notation.

Generic image for table
Table III.

Outline hierarchy of material models, illustrating the use of polymorphism (in the object-oriented programming sense). Continuum dynamics programs can refer to material properties as an abstract “material type” with an abstract material state. The actual type of a material (e.g., mechanical EOS), the specific model type (e.g., polytropic), and the state of material of that type are all handled transparently by the object-oriented software structure. The reactive EOS has an additional state parameter , and the software operations are defined by extending those of the mechanical EOS. Spalling materials can be represented by a solid state plus a void fraction , with operations defined by extending those of the solid material. Homogeneous mixtures are defined as a set of thermal EOS, and the state is the set of states and mass fractions for each. Heterogeneous mixtures are defined as a set of “pure” material properties of any type, and the state is the set of states for each component plus its volume fraction.

Loading

Article metrics loading...

/content/aip/journal/jap/104/7/10.1063/1.2975338
2008-10-14
2014-04-19
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Numerical solution of shock and ramp compression for general material properties
http://aip.metastore.ingenta.com/content/aip/journal/jap/104/7/10.1063/1.2975338
10.1063/1.2975338
SEARCH_EXPAND_ITEM