1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Damage profile and ion distribution of slow heavy ions in compounds
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/105/10/10.1063/1.3118582
1.
1.D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, Nature (London) 430, 1009 (2004).
http://dx.doi.org/10.1038/nature02810
2.
2.M. R. Werner and W. R. Fahrner, IEEE Trans. Ind. Electron. IE-48, 249 (2001).
http://dx.doi.org/10.1109/41.915402
3.
3.J. Camassel and S. Juillaguet, J. Phys. D: Appl. Phys. 40, 6264 (2007).
http://dx.doi.org/10.1088/0022-3727/40/20/S11
4.
4.A. -A. F. Tavassoli, J. Nucl. Mater. 302, 73 (2002).
http://dx.doi.org/10.1016/S0022-3115(02)00794-8
5.
5.L. L. Snead, T. Nozawa, Y. Katoh, T. -S. Byun, S. Kondo, and D. A. Petti, J. Nucl. Mater. 371, 329 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.05.016
6.
6.A. Gupta and C. Jacob, Prog. Cryst. Growth Charact. Mater. 51, 43 (2005).
http://dx.doi.org/10.1016/j.pcrysgrow.2005.10.003
7.
7.W. J. Choyke and G. Pensl, MRS Bull. 22, 25 (1997).
8.
8.S. J. Zinkle and N. M. Ghoniem, Fusion Eng. Des. 51–52, 55 (2000).
http://dx.doi.org/10.1016/S0920-3796(00)00320-3
9.
9.H. Tatlisu, M. Bastuerk, H. Rauch, and M. Trinker, Mater. Struct. 15, 13 (2008).
10.
10.Y. Zhang, I. -T. Bae, and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 266, 2828 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.03.197
11.
11.S. M. Kang, J. H. Ha, S. H. Park, H. S. Kim, S. D. Chun, and Y. K. Kim, Nucl. Instrum. Methods Phys. Res. A 579, 145 (2007).
http://dx.doi.org/10.1016/j.nima.2007.04.025
12.
12.I. Pintilie, U. Grossner, B. G. Svensson, K. Irmscher, and B. Thomas, Appl. Phys. Lett. 90, 062113 (2007).
http://dx.doi.org/10.1063/1.2472173
13.
13.H. Inui, H. Mori, and H. Fujita, Philos. Mag. B 61, 107 (1990).
http://dx.doi.org/10.1080/13642819008208655
14.
14.I. -T. Bae, W. J. Weber, M. Ishimaru, and Y. Hirotsu, Appl. Phys. Lett. 90, 121910 (2007).
http://dx.doi.org/10.1063/1.2715135
15.
15.K. Danno and T. Kimoto, J. Appl. Phys. 101, 103704 (2007).
http://dx.doi.org/10.1063/1.2730569
16.
16.L. L. Snead, R. Scholz, A. Hasegawa, and A. Frias Rebelo, J. Nucl. Mater. 307–311, 1141 (2002).
http://dx.doi.org/10.1016/S0022-3115(02)01052-8
17.
17.T. Taguchi, N. Igawa, S. Miwa, E. Wakai, S. Jitsukawa, L. L. Snead, and A. Hasegawa, J. Nucl. Mater. 335, 508 (2004).
http://dx.doi.org/10.1016/j.jnucmat.2004.08.014
18.
18.E. Oliviero, M. L. David, M. F. Beaufort, J. Nomgaudyte, L. Pranevicius, A. Declemy, and J. F. Barbot, J. Appl. Phys. 91, 1179 (2002).
http://dx.doi.org/10.1063/1.1429760
19.
19.J. Aihara, T. Hojo, S. Furuno, M. Ishihara, K. Sawa, H. Yamamoto, and K. Hojou, Nucl. Instrum. Methods Phys. Res. B 241, 559 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.07.068
20.
20.S. J. Zinkle, V. A. Skuratov, and D. T. Hoelzer, Nucl. Instrum. Methods Phys. Res. B 191, 758 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)00648-1
21.
21.W. Jiang, Y. Zhang, and W. J. Weber, Phys. Rev. B 70, 165208 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.165208
22.
22.A. Audren, A. Benyagoub, L. Thomé, and F. Garrido, Nucl. Instrum. Methods Phys. Res. B 257, 227 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.01.005
23.
23.Z. Zolnai, A. Ster, N. Q. Khánh, G. Battistig, T. Lohner, J. Gyulai, E. Kótai, and M. Posselt, J. Appl. Phys. 101, 023502 (2007).
http://dx.doi.org/10.1063/1.2409609
24.
24.T. Bus, A. van Veen, A. Shiryaev, A. V. Fedorov, H. Schut, F. D. Tichelaar, and J. Sietsma, Mater. Sci. Eng., B 102, 269 (2003).
http://dx.doi.org/10.1016/S0921-5107(02)00712-2
25.
25.I. -T. Bae, M. Ishimaru, Y. Hirotsu, and K. E. Sickafus, J. Appl. Phys. 96, 1451 (2004).
http://dx.doi.org/10.1063/1.1766093
26.
26.W. J. Weber, L. M. Wang, N. Yu, and N. J. Hess, Mater. Sci. Eng., A 253, 62 (1998).
http://dx.doi.org/10.1016/S0921-5093(98)00710-2
27.
27.L. L. Snead, Y. Katoh, and S. Connery, J. Nucl. Mater. 367–370, 677 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.03.097
28.
28.I. V. Ilyin, M. V. Muzafarova, E. N. Mokhov, and P. G. Baranov, Semicond. Sci. Technol. 22, 270 (2007).
http://dx.doi.org/10.1088/0268-1242/22/3/017
29.
29.Y. Katoh, L. L. Snead, C. H. Henager, Jr., A. Hasegawa, A. Kohyama, B. Riccardi, and H. Hegeman, J. Nucl. Mater. 367–370, 659 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.03.032
30.
30.Y. Zhang, W. J. Weber, V. Shutthanandan, R. Devanathan, S. Thevuthasan, G. Balakrishnan, and D. M. Paul, J. Appl. Phys. 95, 2866 (2004).
http://dx.doi.org/10.1063/1.1644891
31.
31.Y. Zhang, W. J. Weber, W. Jiang, C. M. Wang, V. Shutthanandan, and A. Hallén, J. Appl. Phys. 95, 4012 (2004).
http://dx.doi.org/10.1063/1.1666974
32.
32.Y. Zhang, J. Lian, C. M. Wang, W. Jiang, R. C. Ewing, and W. J. Weber, Phys. Rev. B 72, 094112 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.094112
33.
33.F. J. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM–The Stopping and Range of Ions in Solids (SRIM Co., Chester, MD, 2008);
33.as well as the original book of by J. F. Ziegler, J. P. Biersack, and U. Littmark (Pergamon, New York, 1985).
34.
34.J. F. Ziegler, SRIM-2008, v. 2008.40, http://www.srim.org.
35.
35.E. Friedland, S. Kalbitzer, M. Hayes, Ch. Klatt, G. Konac, and Ch. Langpape, Nucl. Instrum. Methods Phys. Res. B 136–138, 147 (1998).
http://dx.doi.org/10.1016/S0168-583X(97)00833-1
36.
36.M. Behar, P. F. P. Fichtner, P. L. Grande, and F. C. Zawislak, Mater. Sci. Eng. R. 15, 1 (1995).
http://dx.doi.org/10.1016/0927-796X(94)00176-6
37.
37.P. F. P. Fichtner, M. Behar, D. Fink, P. Goppelt, and P. L. Grande, Nucl. Instrum. Methods Phys. Res. B 64, 668 (1992).
http://dx.doi.org/10.1016/0168-583X(92)95555-6
38.
38.M. Behar, P. L. Grande, R. Wagner de Oliveira, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 59, 1 (1991).
http://dx.doi.org/10.1016/0168-583X(91)95162-7
39.
39.P. L. Grande, F. C. Zawislak, D. Fink, and M. Behar, Nucl. Instrum. Methods Phys. Res. B 61, 282 (1991).
http://dx.doi.org/10.1016/0168-583X(91)95631-M
40.
40.P. L. Grande, M. Behar, J. P. Biersack, and F. C. Zawislak, Nucl. Instrum. Methods Phys. Res. B 45, 689 (1990).
http://dx.doi.org/10.1016/0168-583X(90)90925-K
41.
41.R. B. Guimaraes, L. Amaral, M. Behar, P. F. P. Fichtner, F. C. Zawislak, and D. Fink, J. Appl. Phys. 63, 2083 (1988).
http://dx.doi.org/10.1063/1.341112
42.
42.R. B. Guimaraes, L. Amaral, M. Behar, D. Fink, and F. C. Zawislak, J. Mater. Res. 3, 1422 (1988).
http://dx.doi.org/10.1557/JMR.1988.1422
43.
43.P. L. Grande, P. F. P. Fichtner, M. Behar, and F. C. Zawislak, Nucl. Instrum. Methods Phys. Res. B 33, 122 (1988).
http://dx.doi.org/10.1016/0168-583X(88)90527-7
44.
44.P. Sigmund, Eur. Phys. J. D 47, 45 (2008).
http://dx.doi.org/10.1140/epjd/e2008-00011-9
45.
45.C. M. Wang, Y. Zhang, W. J. Weber, W. Jiang, and L. E. Thomas, J. Mater. Res. 18, 772 (2003).
http://dx.doi.org/10.1557/JMR.2003.0107
46.
46.W. Jiang, C. M. Wang, W. J. Weber, M. H. Engelhard, and L. V. Saraf, J. Appl. Phys. 95, 4687 (2004).
http://dx.doi.org/10.1063/1.1690102
47.
47.R. Devanathan, W. J. Weber, and F. Gao, J. Appl. Phys. 90, 2303 (2001).
http://dx.doi.org/10.1063/1.1389523
48.
48.W. J. Weber, N. Yu, and L. M. Wang, J. Nucl. Mater. 253, 53 (1998).
http://dx.doi.org/10.1016/S0022-3115(97)00305-X
49.
49.L. L. Snead, S. J. Zinkle, J. C. Hay, and M. C. Osborne, Nucl. Instrum. Methods Phys. Res. B 141, 123 (1998).
http://dx.doi.org/10.1016/S0168-583X(98)00085-8
50.
50.Y. Zhang and W. J. Weber, Appl. Phys. Lett. 83, 1665 (2003).
http://dx.doi.org/10.1063/1.1604473
51.
51.Y. Zhang, J. Jensen, G. Possnert, D. A. Grove, I. Bae, and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 261, 1180 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.04.276
52.
52.M. Kokkoris, G. Perdikakis, S. Kossionides, S. Petrovi, R. Vlastou, and R. Grötzschel, Nucl. Instrum. Methods Phys. Res. B 219–220, 226 (2004).
http://dx.doi.org/10.1016/j.nimb.2004.01.058
53.
53.R. Nipoti and F. Letertre, Mater. Res. Soc. Symp. Proc. 742, K212 (2003).
54.
54.Y. Zhang, J. Lian, Z. Zhu, W. D. Bennett, L. V. Saraf, J. L. Rausch, C. A. Hendricks, R. C. Ewing, and W. J. Weber, J. Nucl. Mater. 389 303 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.02.014
55.
55.A. Heft, E. Wendler, T. Bachmann, E. Glaser, and W. Wesch, Nucl. Instrum. Methods Phys. Res. B 29, 142 (1995).
56.
56.M. Ishimaru and K. E. Sickafus, Appl. Phys. Lett. 75, 1392 (1999).
http://dx.doi.org/10.1063/1.124704
57.
57.P. Sigmund, Stopping of Heavy Ions: A Theoretical Approach. Springer Tracts in Modern Physics (Springer, Berlin, 2004), Vol. 204.
59.
59.S. Ahmed, C. J. Barbero, T. W. Sigmon, and J. W. Erickson, J. Appl. Phys. 77, 6194 (1995).
http://dx.doi.org/10.1063/1.359146
60.
60.S. Ahmed, C. J. Barbero, T. W. Sigmon, and J. W. Erickson, Appl. Phys. Lett. 65, 67 (1994).
http://dx.doi.org/10.1063/1.113076
61.
61.J. Romanek, D. Grambole, F. Herrmann, M. Voelskow, M. Posselt, W. Skorupa, and J. Zuk, Nucl. Instrum. Methods Phys. Res. B 251, 148 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.06.005
62.
62.Y. Zhang, W. J. Weber, and H. J. Whitlow, Nucl. Instrum. Methods Phys. Res. B 215, 48 (2004).
http://dx.doi.org/10.1016/j.nimb.2003.09.005
63.
63.Y. Zhang, G. Possnert, and H. J. Whitlow, Nucl. Instrum. Methods Phys. Res. B 183, 34 (2001).
http://dx.doi.org/10.1016/S0168-583X(00)00684-4
64.
64.Y. Zhang, Nucl. Instrum. Methods Phys. Res. B 196, 1 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)01246-6
65.
65.Y. Zhang, W. J. Weber, and C. M. Wang, Phys. Rev. B 69, 205201 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.205201
66.
66.Y. Zhang, W. J. Weber, D. E. McCready, D. A. Grove, J. Jensen, and G. Possnert, Appl. Phys. Lett. 87, 104103 (2005).
http://dx.doi.org/10.1063/1.2041828
67.
67.Y. Zhang, J. Jensen, G. Possnert, D. A. Grove, D. E. McCready, B. W. Arey, and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 249, 18 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.03.013
68.
68.Y. Zhang, W. J. Weber, D. A. Grove, J. Jensen, and G. Possnert, Nucl. Instrum. Methods Phys. Res. B 250, 62 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.04.148
69.
69.A. Jostsons, E. R. Vance, D. J. Mercer, and V. M. Oversby, Mater. Res. Soc. Symp. Proc. 353, 775 (1994).
70.
70.W. Jiang and W. J. Weber, Appl. Phys. Lett. 83, 458 (2003).
http://dx.doi.org/10.1063/1.1594282
71.
71.W. Jiang, I. -T. Bae, and W. J. Weber, J. Phys.: Condens. Matter 19, 356207 (2007).
http://dx.doi.org/10.1088/0953-8984/19/35/356207
72.
72.V. Kuzmin, Surf. Coat. Technol. 201, 8388 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2006.10.053
73.
73.V. Kuzmin, Nucl. Instrum. Methods Phys. Res. B 249, 13 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.03.012
74.
74.V. Kuzmin, Nucl. Instrum. Methods Phys. Res. B 256, 105 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.11.095
75.
75.D. J. Land and J. G. Brennan, At. Data Nucl. Data Tables 22, 235 (1978).
http://dx.doi.org/10.1016/0092-640X(78)90016-5
76.
76.P. Sigmund, Nucl. Instrum. Methods Phys. Res. B 135, 1 (1998).
http://dx.doi.org/10.1016/S0168-583X(97)00638-1
77.
77.J. Lindhard, M. Scharff, and H. E. Schioett, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 33, 1 (1963).
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/10/10.1063/1.3118582
Loading
/content/aip/journal/jap/105/10/10.1063/1.3118582
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/105/10/10.1063/1.3118582
2009-05-18
2014-07-30

Abstract

Slow heavy ions inevitably produce a significant concentration of defects and lattice disorder in solids during their slowing-down process via ion-solid interactions. For irradiationeffects research and many industrial applications, atomic defect production, ion range, and doping concentration are commonly estimated by the stopping and range of ions in matter (SRIM) code. In this study, ion-induced damage and projectile ranges of low energy Au ions in SiC are determined using complementary ion beam and microscopy techniques. Considerable errors in both disorder profile and ion range predicted by the SRIM code indicate an overestimation of the electronic stopping power, by a factor of 2 in most cases, in the energy region up to 25 keV/nucleon. Such large discrepancies are also observed for slow heavy ions, including Pt, Au, and Pb ions, in other compound materials, such as GaN, AlN, and . Due to the importance of these materials for advanced device and nuclear applications, better electronic stopping cross section predictions, based on a reciprocity principle developed by Sigmund, is suggested with fitting parameters for possible improvement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/105/10/1.3118582.html;jsessionid=7qqc5stfdhuq9.x-aip-live-06?itemId=/content/aip/journal/jap/105/10/10.1063/1.3118582&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Damage profile and ion distribution of slow heavy ions in compounds
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/10/10.1063/1.3118582
10.1063/1.3118582
SEARCH_EXPAND_ITEM