1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Damage profile and ion distribution of slow heavy ions in compounds
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/105/10/10.1063/1.3118582
1.
1.D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, and K. Takatori, Nature (London) 430, 1009 (2004).
http://dx.doi.org/10.1038/nature02810
2.
2.M. R. Werner and W. R. Fahrner, IEEE Trans. Ind. Electron. IE-48, 249 (2001).
http://dx.doi.org/10.1109/41.915402
3.
3.J. Camassel and S. Juillaguet, J. Phys. D: Appl. Phys. 40, 6264 (2007).
http://dx.doi.org/10.1088/0022-3727/40/20/S11
4.
4.A. -A. F. Tavassoli, J. Nucl. Mater. 302, 73 (2002).
http://dx.doi.org/10.1016/S0022-3115(02)00794-8
5.
5.L. L. Snead, T. Nozawa, Y. Katoh, T. -S. Byun, S. Kondo, and D. A. Petti, J. Nucl. Mater. 371, 329 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.05.016
6.
6.A. Gupta and C. Jacob, Prog. Cryst. Growth Charact. Mater. 51, 43 (2005).
http://dx.doi.org/10.1016/j.pcrysgrow.2005.10.003
7.
7.W. J. Choyke and G. Pensl, MRS Bull. 22, 25 (1997).
8.
8.S. J. Zinkle and N. M. Ghoniem, Fusion Eng. Des. 51–52, 55 (2000).
http://dx.doi.org/10.1016/S0920-3796(00)00320-3
9.
9.H. Tatlisu, M. Bastuerk, H. Rauch, and M. Trinker, Mater. Struct. 15, 13 (2008).
10.
10.Y. Zhang, I. -T. Bae, and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 266, 2828 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.03.197
11.
11.S. M. Kang, J. H. Ha, S. H. Park, H. S. Kim, S. D. Chun, and Y. K. Kim, Nucl. Instrum. Methods Phys. Res. A 579, 145 (2007).
http://dx.doi.org/10.1016/j.nima.2007.04.025
12.
12.I. Pintilie, U. Grossner, B. G. Svensson, K. Irmscher, and B. Thomas, Appl. Phys. Lett. 90, 062113 (2007).
http://dx.doi.org/10.1063/1.2472173
13.
13.H. Inui, H. Mori, and H. Fujita, Philos. Mag. B 61, 107 (1990).
http://dx.doi.org/10.1080/13642819008208655
14.
14.I. -T. Bae, W. J. Weber, M. Ishimaru, and Y. Hirotsu, Appl. Phys. Lett. 90, 121910 (2007).
http://dx.doi.org/10.1063/1.2715135
15.
15.K. Danno and T. Kimoto, J. Appl. Phys. 101, 103704 (2007).
http://dx.doi.org/10.1063/1.2730569
16.
16.L. L. Snead, R. Scholz, A. Hasegawa, and A. Frias Rebelo, J. Nucl. Mater. 307–311, 1141 (2002).
http://dx.doi.org/10.1016/S0022-3115(02)01052-8
17.
17.T. Taguchi, N. Igawa, S. Miwa, E. Wakai, S. Jitsukawa, L. L. Snead, and A. Hasegawa, J. Nucl. Mater. 335, 508 (2004).
http://dx.doi.org/10.1016/j.jnucmat.2004.08.014
18.
18.E. Oliviero, M. L. David, M. F. Beaufort, J. Nomgaudyte, L. Pranevicius, A. Declemy, and J. F. Barbot, J. Appl. Phys. 91, 1179 (2002).
http://dx.doi.org/10.1063/1.1429760
19.
19.J. Aihara, T. Hojo, S. Furuno, M. Ishihara, K. Sawa, H. Yamamoto, and K. Hojou, Nucl. Instrum. Methods Phys. Res. B 241, 559 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.07.068
20.
20.S. J. Zinkle, V. A. Skuratov, and D. T. Hoelzer, Nucl. Instrum. Methods Phys. Res. B 191, 758 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)00648-1
21.
21.W. Jiang, Y. Zhang, and W. J. Weber, Phys. Rev. B 70, 165208 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.165208
22.
22.A. Audren, A. Benyagoub, L. Thomé, and F. Garrido, Nucl. Instrum. Methods Phys. Res. B 257, 227 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.01.005
23.
23.Z. Zolnai, A. Ster, N. Q. Khánh, G. Battistig, T. Lohner, J. Gyulai, E. Kótai, and M. Posselt, J. Appl. Phys. 101, 023502 (2007).
http://dx.doi.org/10.1063/1.2409609
24.
24.T. Bus, A. van Veen, A. Shiryaev, A. V. Fedorov, H. Schut, F. D. Tichelaar, and J. Sietsma, Mater. Sci. Eng., B 102, 269 (2003).
http://dx.doi.org/10.1016/S0921-5107(02)00712-2
25.
25.I. -T. Bae, M. Ishimaru, Y. Hirotsu, and K. E. Sickafus, J. Appl. Phys. 96, 1451 (2004).
http://dx.doi.org/10.1063/1.1766093
26.
26.W. J. Weber, L. M. Wang, N. Yu, and N. J. Hess, Mater. Sci. Eng., A 253, 62 (1998).
http://dx.doi.org/10.1016/S0921-5093(98)00710-2
27.
27.L. L. Snead, Y. Katoh, and S. Connery, J. Nucl. Mater. 367–370, 677 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.03.097
28.
28.I. V. Ilyin, M. V. Muzafarova, E. N. Mokhov, and P. G. Baranov, Semicond. Sci. Technol. 22, 270 (2007).
http://dx.doi.org/10.1088/0268-1242/22/3/017
29.
29.Y. Katoh, L. L. Snead, C. H. Henager, Jr., A. Hasegawa, A. Kohyama, B. Riccardi, and H. Hegeman, J. Nucl. Mater. 367–370, 659 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.03.032
30.
30.Y. Zhang, W. J. Weber, V. Shutthanandan, R. Devanathan, S. Thevuthasan, G. Balakrishnan, and D. M. Paul, J. Appl. Phys. 95, 2866 (2004).
http://dx.doi.org/10.1063/1.1644891
31.
31.Y. Zhang, W. J. Weber, W. Jiang, C. M. Wang, V. Shutthanandan, and A. Hallén, J. Appl. Phys. 95, 4012 (2004).
http://dx.doi.org/10.1063/1.1666974
32.
32.Y. Zhang, J. Lian, C. M. Wang, W. Jiang, R. C. Ewing, and W. J. Weber, Phys. Rev. B 72, 094112 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.094112
33.
33.F. J. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM–The Stopping and Range of Ions in Solids (SRIM Co., Chester, MD, 2008);
33.as well as the original book of by J. F. Ziegler, J. P. Biersack, and U. Littmark (Pergamon, New York, 1985).
34.
34.J. F. Ziegler, SRIM-2008, v. 2008.40, http://www.srim.org.
35.
35.E. Friedland, S. Kalbitzer, M. Hayes, Ch. Klatt, G. Konac, and Ch. Langpape, Nucl. Instrum. Methods Phys. Res. B 136–138, 147 (1998).
http://dx.doi.org/10.1016/S0168-583X(97)00833-1
36.
36.M. Behar, P. F. P. Fichtner, P. L. Grande, and F. C. Zawislak, Mater. Sci. Eng. R. 15, 1 (1995).
http://dx.doi.org/10.1016/0927-796X(94)00176-6
37.
37.P. F. P. Fichtner, M. Behar, D. Fink, P. Goppelt, and P. L. Grande, Nucl. Instrum. Methods Phys. Res. B 64, 668 (1992).
http://dx.doi.org/10.1016/0168-583X(92)95555-6
38.
38.M. Behar, P. L. Grande, R. Wagner de Oliveira, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 59, 1 (1991).
http://dx.doi.org/10.1016/0168-583X(91)95162-7
39.
39.P. L. Grande, F. C. Zawislak, D. Fink, and M. Behar, Nucl. Instrum. Methods Phys. Res. B 61, 282 (1991).
http://dx.doi.org/10.1016/0168-583X(91)95631-M
40.
40.P. L. Grande, M. Behar, J. P. Biersack, and F. C. Zawislak, Nucl. Instrum. Methods Phys. Res. B 45, 689 (1990).
http://dx.doi.org/10.1016/0168-583X(90)90925-K
41.
41.R. B. Guimaraes, L. Amaral, M. Behar, P. F. P. Fichtner, F. C. Zawislak, and D. Fink, J. Appl. Phys. 63, 2083 (1988).
http://dx.doi.org/10.1063/1.341112
42.
42.R. B. Guimaraes, L. Amaral, M. Behar, D. Fink, and F. C. Zawislak, J. Mater. Res. 3, 1422 (1988).
http://dx.doi.org/10.1557/JMR.1988.1422
43.
43.P. L. Grande, P. F. P. Fichtner, M. Behar, and F. C. Zawislak, Nucl. Instrum. Methods Phys. Res. B 33, 122 (1988).
http://dx.doi.org/10.1016/0168-583X(88)90527-7
44.
44.P. Sigmund, Eur. Phys. J. D 47, 45 (2008).
http://dx.doi.org/10.1140/epjd/e2008-00011-9
45.
45.C. M. Wang, Y. Zhang, W. J. Weber, W. Jiang, and L. E. Thomas, J. Mater. Res. 18, 772 (2003).
http://dx.doi.org/10.1557/JMR.2003.0107
46.
46.W. Jiang, C. M. Wang, W. J. Weber, M. H. Engelhard, and L. V. Saraf, J. Appl. Phys. 95, 4687 (2004).
http://dx.doi.org/10.1063/1.1690102
47.
47.R. Devanathan, W. J. Weber, and F. Gao, J. Appl. Phys. 90, 2303 (2001).
http://dx.doi.org/10.1063/1.1389523
48.
48.W. J. Weber, N. Yu, and L. M. Wang, J. Nucl. Mater. 253, 53 (1998).
http://dx.doi.org/10.1016/S0022-3115(97)00305-X
49.
49.L. L. Snead, S. J. Zinkle, J. C. Hay, and M. C. Osborne, Nucl. Instrum. Methods Phys. Res. B 141, 123 (1998).
http://dx.doi.org/10.1016/S0168-583X(98)00085-8
50.
50.Y. Zhang and W. J. Weber, Appl. Phys. Lett. 83, 1665 (2003).
http://dx.doi.org/10.1063/1.1604473
51.
51.Y. Zhang, J. Jensen, G. Possnert, D. A. Grove, I. Bae, and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 261, 1180 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.04.276
52.
52.M. Kokkoris, G. Perdikakis, S. Kossionides, S. Petrovi, R. Vlastou, and R. Grötzschel, Nucl. Instrum. Methods Phys. Res. B 219–220, 226 (2004).
http://dx.doi.org/10.1016/j.nimb.2004.01.058
53.
53.R. Nipoti and F. Letertre, Mater. Res. Soc. Symp. Proc. 742, K212 (2003).
54.
54.Y. Zhang, J. Lian, Z. Zhu, W. D. Bennett, L. V. Saraf, J. L. Rausch, C. A. Hendricks, R. C. Ewing, and W. J. Weber, J. Nucl. Mater. 389 303 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.02.014
55.
55.A. Heft, E. Wendler, T. Bachmann, E. Glaser, and W. Wesch, Nucl. Instrum. Methods Phys. Res. B 29, 142 (1995).
56.
56.M. Ishimaru and K. E. Sickafus, Appl. Phys. Lett. 75, 1392 (1999).
http://dx.doi.org/10.1063/1.124704
57.
57.P. Sigmund, Stopping of Heavy Ions: A Theoretical Approach. Springer Tracts in Modern Physics (Springer, Berlin, 2004), Vol. 204.
59.
59.S. Ahmed, C. J. Barbero, T. W. Sigmon, and J. W. Erickson, J. Appl. Phys. 77, 6194 (1995).
http://dx.doi.org/10.1063/1.359146
60.
60.S. Ahmed, C. J. Barbero, T. W. Sigmon, and J. W. Erickson, Appl. Phys. Lett. 65, 67 (1994).
http://dx.doi.org/10.1063/1.113076
61.
61.J. Romanek, D. Grambole, F. Herrmann, M. Voelskow, M. Posselt, W. Skorupa, and J. Zuk, Nucl. Instrum. Methods Phys. Res. B 251, 148 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.06.005
62.
62.Y. Zhang, W. J. Weber, and H. J. Whitlow, Nucl. Instrum. Methods Phys. Res. B 215, 48 (2004).
http://dx.doi.org/10.1016/j.nimb.2003.09.005
63.
63.Y. Zhang, G. Possnert, and H. J. Whitlow, Nucl. Instrum. Methods Phys. Res. B 183, 34 (2001).
http://dx.doi.org/10.1016/S0168-583X(00)00684-4
64.
64.Y. Zhang, Nucl. Instrum. Methods Phys. Res. B 196, 1 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)01246-6
65.
65.Y. Zhang, W. J. Weber, and C. M. Wang, Phys. Rev. B 69, 205201 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.205201
66.
66.Y. Zhang, W. J. Weber, D. E. McCready, D. A. Grove, J. Jensen, and G. Possnert, Appl. Phys. Lett. 87, 104103 (2005).
http://dx.doi.org/10.1063/1.2041828
67.
67.Y. Zhang, J. Jensen, G. Possnert, D. A. Grove, D. E. McCready, B. W. Arey, and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 249, 18 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.03.013
68.
68.Y. Zhang, W. J. Weber, D. A. Grove, J. Jensen, and G. Possnert, Nucl. Instrum. Methods Phys. Res. B 250, 62 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.04.148
69.
69.A. Jostsons, E. R. Vance, D. J. Mercer, and V. M. Oversby, Mater. Res. Soc. Symp. Proc. 353, 775 (1994).
70.
70.W. Jiang and W. J. Weber, Appl. Phys. Lett. 83, 458 (2003).
http://dx.doi.org/10.1063/1.1594282
71.
71.W. Jiang, I. -T. Bae, and W. J. Weber, J. Phys.: Condens. Matter 19, 356207 (2007).
http://dx.doi.org/10.1088/0953-8984/19/35/356207
72.
72.V. Kuzmin, Surf. Coat. Technol. 201, 8388 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2006.10.053
73.
73.V. Kuzmin, Nucl. Instrum. Methods Phys. Res. B 249, 13 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.03.012
74.
74.V. Kuzmin, Nucl. Instrum. Methods Phys. Res. B 256, 105 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.11.095
75.
75.D. J. Land and J. G. Brennan, At. Data Nucl. Data Tables 22, 235 (1978).
http://dx.doi.org/10.1016/0092-640X(78)90016-5
76.
76.P. Sigmund, Nucl. Instrum. Methods Phys. Res. B 135, 1 (1998).
http://dx.doi.org/10.1016/S0168-583X(97)00638-1
77.
77.J. Lindhard, M. Scharff, and H. E. Schioett, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 33, 1 (1963).
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/10/10.1063/1.3118582
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SRIM predications and SIMS measurement are overlaid on top of TEM images for (a) 700 keV irradiation in at 295 K to an ion fluence of , (b) 1.0 MeV irradiation at 175 K to an ion fluence of , (c) 2.0 MeV irradiation with 60° off surface normal at 295 K to an ion fluence of , and (d) 10 MeV irradiation at 295 K to an ion fluence of . The diamonds denote the SRIM predicted damage profile under the corresponding irradiation. The triangles denote the Au profile in the unit of atom per nm per ion. The dashed line is the level of the critical dose for amorphous under each irradiation condition and represents above which an amorphous layer should be formed.

Image of FIG. 2.

Click to view

FIG. 2.

Stopping powers for He ions in from two independent measurements (Data 1 and Data 2) (Refs. 50 and 51) The energy region of interest is for a 2 MeV He ion that penetrates depth in SiC, is scattered by a Si atom or a C atom, and then is detected by a Si detector.

Image of FIG. 3.

Click to view

FIG. 3.

irradiated by 1.0 MeV Au at 175 K to fluence of . (a) Comparison of the Au profile measured by SIMS (triangles) and RBS (stars). The volume expansion of 14% is taken into account for the RBS depth conversion from keV to nanometer. The corresponding TEM image is shown in the background with an inset of a NBED pattern taken from the corresponding area. (b) EELS spectra taken from an unirradiated SiC (virgin) and different amorphous (Au-irradiated) regions as marked by circled numbers in (a). The probe size is . The corresponding peak position is indicated. The unit of the intensity is arbitrary.

Image of FIG. 4.

Click to view

FIG. 4.

SRIM predictions, SIMS measurement, and EDS results are overlaid on a cross-sectional TEM bright-field image for irradiated by 1.0 MeV Au to a fluence of at 550 K. The three SAED insets are taken from the corresponding areas. The Au concentration measured by EDS at different depths is marked by the dashed circles.

Image of FIG. 5.

Click to view

FIG. 5.

Damage evolution in under 700 keV irradiation at 295 K to different ion fluences. The damage profiles (lines) measured by RBS are determined assuming a constant density of and overlaid on the TEM bright-field images for the samples irradiated to ion fluences of (top image) and (bottom image). The profile shown by stars is corrected with 14% volume expansion (assuming density of ). Also included as insets are SAED patterns taken from the middle region between the two damage bands marked by the two arrows.

Image of FIG. 6.

Click to view

FIG. 6.

TEM bright-field image for irradiated with 1 MeV Au at 175 K to an ion fluence of . NBED measurements were performed as a function of depth, as marked by the dotted circles, with a probe size of .

Image of FIG. 7.

Click to view

FIG. 7.

The damage profiles of irradiated with 1 MeV at 175 K to ion fluences of , , and .The profiles were measured by channeling RBS and overlaid on the TEM images with the lowest-fluence sample at the top and highest-fluence sample at the bottom. The lines are smooth fits to the RBS data.

Image of FIG. 8.

Click to view

FIG. 8.

Comparison of the stopping cross section predicted by the SRIM code and the reciprocity approach for (a) Au ions and (b) Pb ions in SiC.

Image of FIG. 9.

Click to view

FIG. 9.

Comparison of the electronic stopping cross section predicted by the SRIM code and the reciprocity approach for Au ions in (a) AlN, (b) GaN, and (c) .

Tables

Generic image for table

Click to view

Table I.

Irradiation parameters, critical dose of amorphization, peak position predicted by SRIM and measured by SIMS under each Au irradiation conditions.

Generic image for table

Click to view

Table II.

Comparison of experimental results, SRIM predictions, and reciprocity approach results for Pb ions in SiC. , , and are the peak positions of the Pb profile determined experimentally, by SRIM calculation and by reciprocity approach, respectively. The SRIM prediction is calculated based on theoretical density of . The corresponding deviations (%) to the experimental results are also listed in the fourth and sixth columns. and are the mean projected range predicted by the SRIM calculation and by the reciprocity approach, respectively. The deviations between and are shown in the last column.

Generic image for table

Click to view

Table III.

Comparison of experimental results, SRIM predictions, and reciprocity approach results for Au ions in SiC. , , and are the peak positions of the Pb profile determined experimentally, by SRIM calculation and by reciprocity approach, respectively. The SRIM prediction is calculated based on theoretical density of . The corresponding deviations (5) to the experimental results are also listed in the fourth and sixth columns. and are the mean projected range predicted by the SRIM calculation and by the reciprocity approach, respectively. The deviations between and are shown in the last column.

Generic image for table

Click to view

Table IV.

Fitting parameters [Eq. (1)] to the stopping cross section data in Figs. 8 and 9 for ion energy up to 25 keV/nucleon.

Loading

Article metrics loading...

/content/aip/journal/jap/105/10/10.1063/1.3118582
2009-05-18
2014-04-24

Abstract

Slow heavy ions inevitably produce a significant concentration of defects and lattice disorder in solids during their slowing-down process via ion-solid interactions. For irradiationeffects research and many industrial applications, atomic defect production, ion range, and doping concentration are commonly estimated by the stopping and range of ions in matter (SRIM) code. In this study, ion-induced damage and projectile ranges of low energy Au ions in SiC are determined using complementary ion beam and microscopy techniques. Considerable errors in both disorder profile and ion range predicted by the SRIM code indicate an overestimation of the electronic stopping power, by a factor of 2 in most cases, in the energy region up to 25 keV/nucleon. Such large discrepancies are also observed for slow heavy ions, including Pt, Au, and Pb ions, in other compound materials, such as GaN, AlN, and . Due to the importance of these materials for advanced device and nuclear applications, better electronic stopping cross section predictions, based on a reciprocity principle developed by Sigmund, is suggested with fitting parameters for possible improvement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/105/10/1.3118582.html;jsessionid=3lep75lebfhn4.x-aip-live-03?itemId=/content/aip/journal/jap/105/10/10.1063/1.3118582&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Damage profile and ion distribution of slow heavy ions in compounds
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/10/10.1063/1.3118582
10.1063/1.3118582
SEARCH_EXPAND_ITEM