banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction
Rent this article for


Image of FIG. 1.
FIG. 1.

Schematic of the proposed femtosecond electron gun employing a dispersion-compensated reflectron bunch compressor. The bunch is predispersed by a pair of bending magnets and with bending angle and a separation distance . A reflectron of length and inclination angle to the horizontal reflects and compresses the pulse onto the sample with incident angle . Typical electron pulse shapes at various points in the setup are also shown. At the sample, the pulse front is tilted relative to the propagation direction by a few degrees as seen by the blowup in the figure. The shortest pulse width occurs in a direction normal to the tilt plane.

Image of FIG. 2.
FIG. 2.

(a) Illustration of the chirp-inverting effect of a reflectron with potential , length , and electric field . The incident pulse with fast (blue) electrons of momentum at point b in front and slower (red) electrons of momentum at point at the back is reversed in both direction and chirp. The initial and final pulse durations are denoted by and , respectively. (b) Dispersion of the pulse entering the reflectron at an angle. Faster electrons travel further parallel and perpendicular to the -direction. (c) Dispersion due to a pair of bending magnets. Slower electrons undergo a larger deflection.

Image of FIG. 3.
FIG. 3.

Geometry and potential lines of the 54 mm reflectron. The electron bunch enters and exits the reflectron at the entry opening on the ground pole side (see also Fig. 1) and turns around at the negative pole. The geometry differs slightly from the reflectron depicted in Fig. 1 in that only one entry opening has been simulated.

Image of FIG. 4.
FIG. 4.

rms pulse radius and rms temporal duration vs propagation distance for the 30 kV (solid lines) and 100 kV (dotted lines) designs. Pulse duration values are calculated assuming a constant bunch center velocity corresponding to 30 and 100 kV for the respective pulses. The position of the solenoid lenses, the reflectron, and the temporal foci are shown.

Image of FIG. 5.
FIG. 5.

Current density vs time profiles of (a) the 30 keV pulse containing 50 000 electrons and (b) the 100 keV pulse containing 200 000 electrons at the temporal focus. The FWHM pulse duration as well as the percentage of electrons contained therein are also shown. The current density profiles have been calculated relative to an optimal fitting plane that is slightly tilted with respect to the plane. The front and side profiles of the 30 keV pulse is seen in (c) and (d), respectively.

Image of FIG. 6.
FIG. 6.

Simulated diffraction spot shapes with and without interaction of the diffracted signal with the unscattered pulse for (a) 50 000, 30 kV electrons at a camera length of 20 cm and diffraction angle of 30 mrad, and (b) 200 000, 100 kV electrons with a camera length of 40 cm and diffraction angle of 15 mrad. The pulses with interaction included have been shifted to the right for visual purposes since they overlap with the pulses where interaction is neglected. The vertical shift is an actual displacement due to signal-pulse interaction.


Generic image for table
Table I.

Design parameters for the reflectron gun. , , and are the distance of the acceleration gap, the distance between the centers of the bending magnets, and the reflectron length, respectively. and denote the bending magnet deflection angle and the reflectron incidence angle, respectively, while , , and are the electron flight distances from the cathode at solenoids and and the sample, respectively. All distances are given in mm.

Generic image for table
Table II.

Optimal values of important bunch parameters at the sample. In the transverse direction, both the values in the - and -directions are reported due to the slight astigmatism of the beam focus. The rms temporal duration is calculated with respect to the tilted plane that best fits the bunch at the temporal focus (see Fig. 1).


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction