1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Unconventional roles of metal catalysts in chemical-vapor syntheses of single-crystalline nanowires
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/105/12/10.1063/1.3117233
1.
1.R. S. Wagner and W. C. Eliis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
2.
2.A. M. Morales and C. L. Lieber, Science 279, 208 (1998).
http://dx.doi.org/10.1126/science.279.5348.208
3.
3.Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan Adv. Mater. (Weinheim, Ger.) 15, 353 (2003);
http://dx.doi.org/10.1002/adma.200390087
3.C. M. Lieber, and Z. L. Wang, MRS Bull. 32, 99 (2007).
4.
4.S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, Science 316, 729 (2007).
http://dx.doi.org/10.1126/science.1139105
5.
5.S. Hofmann, R. Sharma, Ch. Wirth, F. Cervantes-Sod, C. Ducati, T. Kasama, R. E. Dunin-Borokowski, J. Druckers, P. Bennett, and J. Robertson, Nature Mater. 7, 372 (2008).
http://dx.doi.org/10.1038/nmat2140
6.
6.Y. Wang, V. Schmidt, S. Senz, and U. Gösele, Nat. Nanotechnol. 1, 186 (2006).
http://dx.doi.org/10.1038/nnano.2006.133
7.
7.T. I. Kamins, S. R. Williams, D. P. Basile, T. Hesjedal, and J. S. Harris, J. Appl. Phys. 89, 1008 (2001).
http://dx.doi.org/10.1063/1.1335640
8.
8.H. -Y. Tuan, D. C. Lee, T. Hanrath, and B. A. Korgel, Chem. Mater. 17, 5705 (2005).
http://dx.doi.org/10.1021/cm0513031
9.
9.J. L. Lensch-Falk, E. R. Hemesath, F. J. Lopez, and L. J. Laugon, J. Am. Chem. Soc. 129, 10670 (2007).
http://dx.doi.org/10.1021/ja074276j
10.
10.K. Kang, D. A. Kim, H. -S. Lee, C. -J. Kim, J. -E. Yang, and M. -H. Jo, Adv. Mater. (Weinheim, Ger.) 20, 4684 (2008).
http://dx.doi.org/10.1002/adma.200801764
11.
11.C. -J. Kim, K. Kang, Y. S. Woo, K. -G. Ryu, H. Moon, J. -M. Kim, D. -S. Zang, and M. -H. Jo, Adv. Mater. (Weinheim, Ger.) 19, 3637 (2007).
http://dx.doi.org/10.1002/adma.200700609
12.
12.K. Kang, S. -K. Kim, C. -J. Kim, and M. -H. Jo, Nano Lett. 8, 431 (2008).
http://dx.doi.org/10.1021/nl072326c
13.
13.B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagram, 2nd ed. (ASM International, Materials Park, OH, 1990), Vol. 1.
14.
14.C. -B. Jin, J. -E. Yang, and M. -H. Jo, Appl. Phys. Lett. 88, 193105 (2006).
http://dx.doi.org/10.1063/1.2201899
15.
15.J. -E. Yang, C. -B. Jin, C. -J. Kim, and M. -H. Jo, Nano Lett. 6, 2679 (2006).
http://dx.doi.org/10.1021/nl0614821
16.
16.F. M. Ross, personal communication (2008).
17.
17.J. B. Hannon, S. Kodambaka, F. M. Ross, and R. M. Tromp, Nature (London) 440, 69 (2006).
http://dx.doi.org/10.1038/nature04574
18.
18.L. H. Dubois and R. G. Nuzzo, J. Vac. Sci. Technol. A 2, 441 (1984).
http://dx.doi.org/10.1116/1.572362
19.
19.C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers, and D. R. Evans, Appl. Phys. Lett. 84, 1389 (2004).
http://dx.doi.org/10.1063/1.1650877
20.
20.J. Kim and W. A. Anderson, Nano Lett. 6, 1356 (2006).
http://dx.doi.org/10.1021/nl0602894
21.
21.Y. -L. Chueh, M. -T. Ko, L. -J. Chou, L. -J. Chen, C. -S. Wu, and C. -D. Chen, Nano Lett. 6, 1637 (2006).
http://dx.doi.org/10.1021/nl060614n
22.
22.L. Ouyang, E. S. Thrall, M. M. Deshmukh, and H. Park, Adv. Mater. (Weinheim, Ger.) 18, 1437 (2006).
http://dx.doi.org/10.1002/adma.200502721
23.
23.A. L. Schmitt, M. J. Bierman, D. Schmeisser, F. J. Himpsel, and S. Jin, Nano Lett. 6, 1617 (2006).
http://dx.doi.org/10.1021/nl060550g
24.
24.Y. Song, A. L. Schmitt, and S. Jin, Nano Lett. 7, 965 (2007).
http://dx.doi.org/10.1021/nl0630687
25.
25.K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. -H. Jung, J. Kim, and B. Kim, Nano Lett. 7, 1240 (2007).
http://dx.doi.org/10.1021/nl070113h
26.
26.G. W. Sears, Acta Metall. 3, 367 (1955).
http://dx.doi.org/10.1016/0001-6160(55)90042-0
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/12/10.1063/1.3117233
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The schematics of Cu catalytic growth of Ge NWs. (b) A part of the equilibrium Cu–Ge binary alloy phase diagram, where the marked region is relevant to our growth conditions. (c) Thermally evaporated 0.5 nm thick Cu films before the CVD. (d) The initial stage of the CVD for 5 s on 0.5 nm thick Cu films. (e) The 2 min of the CVD on 0.5 nm thick Cu films. The inset shows TEM image of an individual Ge NW grown by Cu catalyst at the tip region. (f) The schematics Au catalytic of growth of Ge NWs. (g) A part of the equilibrium Au–Ge binary alloy phase diagram, where the marked region is relevant to our growth conditions. (h) Thermally evaporated 0.5 nm thick Au films before the CVD. (i) The initial stage of the CVD for 5 s on 0.5 nm thick Au films. (j) The 30 s CVD on 0.5 nm thick Au films. The inset shows TEM image of an individual Ge NW grown by Au catalyst at the tip region. The scale bar is 100 nm for all figures, unless specified otherwise. [(c)–(e)] and [(h)–(j)] are adapted from Ref. 10.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The schematics of the spontaneous NW growth on continuous Ni bulks. (b) A part of the equilibrium Ni–Si binary alloy phase diagram. (c) NWs grown on patterned Ni films. The scale bar is . The inset shows TEM image of an individual NW at the tip region. (d) A plan-view SEM image of NWs grown at the vapor pressure of 50 Torr of . The inset is the reaction products grown at 200 Torr of . The scale bar is . (e) The schematics of Si NW growth using vapor precursor at with discretely distributed Au nanoclusters. (f) A part of the equilibrium Au–Si binary alloy phase diagram. (g) Si NWs grown by the catalytic Au nanoclusters. The scale bar is . The inset shows TEM image of an individual Si NW at the tip region. (h) A plan-view SEM image of NWs grown on the oxidized Ni films at the vapor pressure of 50 Torr of . The inset is the reaction products grown on bare Ni surfaces under the same conditions of the main panel. The scale bar is . (c), (d) and (h) are adapted from Refs. 11 and 12.

Loading

Article metrics loading...

/content/aip/journal/jap/105/12/10.1063/1.3117233
2009-06-18
2014-04-16

Abstract

In this invited contribution at the 29th International Conference on the Physics of semiconductors (ICPS 2008), we review two examples of solid-catalytic nanowire (NW) growth in parallel comparisons to the NW growth from the eutectic liquid catalyst. First, we demonstrated the Cu-catalyzed Ge NW growth using vapor precursor at , which is far below the Cu–Ge eutectic temperature of , with a relatively uniform diameter distribution directly templated from that of the catalysts. We provide evidence that the formation of solid catalysts and Gediffusion across the catalysts are responsible for such low-temperature growth of Ge NWs in a size-deterministic manner. Second, we show the spontaneous silicidation of NWs on continuous Ni bulks using vapor precursor at . This growth is particularly marked in that NWs are formed in a self-organized manner without employing the nanocluster catalysts. We discuss this spontaneous growth of NWs within the frame of the nucleation kinetics in the low supersaturation limit in analogous with the earlier examples of the vapor-condensation at the low vapor pressures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/105/12/1.3117233.html;jsessionid=46j64602d5uru.x-aip-live-02?itemId=/content/aip/journal/jap/105/12/10.1063/1.3117233&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Unconventional roles of metal catalysts in chemical-vapor syntheses of single-crystalline nanowires
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/12/10.1063/1.3117233
10.1063/1.3117233
SEARCH_EXPAND_ITEM