1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Two-dimensional electron gases: Theory of ultrafast dynamics of electron-phonon interactions in graphene, surfaces, and quantum wells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/105/12/10.1063/1.3117236
1.
1.F. Rossi and T. Kuhn, Rev. Mod. Phys. 74, 895 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.895
2.
2.A. Thränhardt, S. Kuckenburg, A. Knorr, T. Meier, and S. W. Koch, Phys. Rev. B 62, 2706 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.2706
3.
3.R. Huber, R. A. Kaindl, B. A. Schmid, and D. S. Chemla, Phys. Rev. B 72, 161314 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.161314
4.
4.T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, Phys. Rev. B 72, 195338 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.195338
5.
5.Z. Wang, K. Reimann, M. Woerner, T. Elsaesser, D. Hofstetter, J. Hwang, W. J. Schaff, and L. F. Eastman, Phys. Rev. Lett. 94, 037403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.037403
6.
6.P. R. Wallace, Phys. Rev. 71, 622 (1947).
http://dx.doi.org/10.1103/PhysRev.71.622
7.
7.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
8.
8.T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, Phys. Rev. Lett. 95, 187403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.187403
9.
9.S. Tanaka and K. Tanimura, Surf. Sci. 529, L251 (2003).
http://dx.doi.org/10.1016/S0039-6028(03)00358-3
10.
10.M. Weinelt, M. Kutschera, T. Fauster, and M. Rohlfing, Phys. Rev. Lett. 92, 126801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.126801
11.
11.S. Butscher and A. Knorr, Phys. Rev. Lett. 97, 197401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.197401
12.
12.T. Kuhn, in Theory of Transport Properties of Semiconductor Nanostructures, edited by E. Schöll (Chapman Hall, London, 1998).
13.
13.N. Buecking, P. Kratzer, M. Scheffler, and A. Knorr, Appl. Phys. A: Mater. Sci. Process. 88, 505 (2007).
http://dx.doi.org/10.1007/s00339-007-4043-4
14.
14.M. Kira and S. Koch, Phys. Rev. A 78, 022102 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.022102
15.
15.A. Carmele, A. Knorr, and M. Richter, Phys. Rev. B 79, 035316 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035316
16.
16.M. Kira, W. Hoyer, and S. W. Koch, Phys. Status Solidi B 238, 443 (2003).
http://dx.doi.org/10.1002/pssb.200303160
17.
17.M. Richter, S. Butscher, M. Schaarschmidt, and A. Knorr, Phys. Rev. B 75, 115331 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115331
18.
18.K. J. Ahn, J. Förstner, and A. Knorr, Phys. Rev. B 71, 153309 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.153309
19.
19.A. Sitek and P. Machnikowski, Phys. Rev. B 75, 035328 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035328
20.
20.C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, Phys. Rev. A 75, 013803 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.013803
21.
21.S. Butscher and A. Knorr, Phys. Status Solidi B 243, 2423 (2006).
http://dx.doi.org/10.1002/pssb.200668078
22.
22.N. Buecking, S. Butscher, M. Richter, C. Weber, S. Declair, M. Woerner, K. Reimann, P. Kratzer, M. Scheffler, and A. Knorr, Proc. SPIE 6892, 6892209 (2008).
23.
23.A formal integration yields . If is divided into a slowly and fast varying part , one applies and solves the EOM with by substituting . The Heitler function reads with .
24.
24.H. Schneider, W. W. Chow, and S. Koch, Phys. Rev. B 70, 235308 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235308
25.
25.M. Richter, T. Renger, G. Renger, and A. Knorr, J. Chem. Phys. 127, 075105 (2007).
http://dx.doi.org/10.1063/1.2756523
26.
26.A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nat. Phys. 3, 36 (2007).
http://dx.doi.org/10.1038/nphys477
27.
27.S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, Phys. Rev. Lett. 93, 185503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.185503
28.
28.S. Butscher, F. Milde, M. Hirtschulz, E. Malic, and A. Knorr, Appl. Phys. Lett. 91, 203103 (2007).
http://dx.doi.org/10.1063/1.2809413
29.
29.V. Meden, C. Wöhler, J. Fricke, and K. Schönhammer, Phys. Rev. B 52, 5624 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.5624
30.
30.A. Grüneis, R. Saito, G. G. Samsonidze, T. Kimura, M. A. Pimenta, A. Jorio, A. G. Souza Filho, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 67, 165402 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.165402
31.
31.E. Malic, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, Phys. Rev. B 74, 195431 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195431
32.
32.J. Dąbrowski and M. Scheffler, Appl. Surf. Sci. 56–58, 15 (1992).
http://dx.doi.org/10.1016/0169-4332(92)90208-F
33.
33.A. Thränhardt, I. Kuznetsova, C. Schlichenmaier, S. W. Koch, L. Shterengas, G. Belenky, J. -Y. Yeh, L. J. Mawst, N. Tansu, J. Hader, J. V. Moloney, and W. W. Chow, Appl. Phys. Lett. 86, 201117 (2005).
http://dx.doi.org/10.1063/1.1929880
34.
34.N. Buecking, P. Kratzer, M. Scheffler, and A. Knorr, Phys. Rev. B 77, 233305 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.233305
35.
35.D. J. Santos and R. Loudon, Phys. Rev. A 52, 1538 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.1538
36.
36.Z. Lenac, Phys. Rev. A 68, 063815 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.063815
37.
37.W. Hoyer, M. Kira, S. W. Koch, J. V. Moloney, and E. M. Wright, Phys. Status Solidi B 244, 3540 (2007).
http://dx.doi.org/10.1002/pssb.200743193
38.
38.M. Richter, M. Schaarschmidt, A. Knorr, W. Hoyer, J. V. Moloney, E. M. Wright, M. Kira, and S. W. Koch, Phys. Rev. A 71, 053819 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.053819
39.
39.M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, Prog. Quantum Electron. 23, 189 (1999).
http://dx.doi.org/10.1016/S0079-6727(99)00008-7
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/12/10.1063/1.3117236
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Band structure of graphene around and points. Via optical excitation, electrons are injected into the conduction band, followed by relaxation processes involving intra- and intervalley scattering with optical phonons.

Image of FIG. 2.

Click to view

FIG. 2.

Temporal evolution of the conduction band density initially in equilibrium (−10 fs) after optical excitation at . Hot electrons relax from a nonequilibrium distribution into a Fermi-like distribution.

Image of FIG. 3.

Click to view

FIG. 3.

Temporal evolution of the phonon number (angle integrated). After 100 fs, a pronounced nonthermal signature can be seen.

Image of FIG. 4.

Click to view

FIG. 4.

Relaxation dynamics at the silicon (001) surface induced by phonons. Projection of the conduction band population into real space for three time steps: (a) at 0, (b) at 2, and (c) at 190 ps. After the optical excitation, the electrons density near the surface (0 ps) spreads across the bulk states (2 ps) and relaxes on a different time scale back to the surface state with minimum energy in the band.

Image of FIG. 5.

Click to view

FIG. 5.

Model of thermal terahertz light emission from a 2DEG: geometric setup.

Image of FIG. 6.

Click to view

FIG. 6.

Luminescence of a Fermi distribution in a GaAs quantum well in AlGaAs for parameters , well width 10 nm and a electron density of (i) for a freestanding quantum well, (ii) in GaAs barrier phonons (iii) including finite sample boundaries and (iv) additionally with AlAs phonons.

Loading

Article metrics loading...

/content/aip/journal/jap/105/12/10.1063/1.3117236
2009-06-18
2014-04-20

Abstract

Many-particle electron-phonon interaction effects in two-dimensional electron gases are investigated within a Born–Markov approach. We calculate the electron-phonon interaction on a microscopic level to describe relaxation processes of quantum confined electrons on ultrafast time scales. Typical examples, where two-dimensional electron gases play a role, are surfaces and two-dimensional nanostructures such as graphene and quantum wells. In graphene, we find nonequilibrium phonon generation and ultrafast cooling processes after optical excitation. Electron relaxation dynamics at the silicon (001) surface exhibits two time scales, corresponding to intrasurface and inside bulk-scattering processes. For GaAs quantum wells, we present broad emission spectra in the terahertz range assisted by LO-phonons of the barrier material.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/105/12/1.3117236.html;jsessionid=1r1l4mjaenuqm.x-aip-live-03?itemId=/content/aip/journal/jap/105/12/10.1063/1.3117236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Two-dimensional electron gases: Theory of ultrafast dynamics of electron-phonon interactions in graphene, surfaces, and quantum wells
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/12/10.1063/1.3117236
10.1063/1.3117236
SEARCH_EXPAND_ITEM