1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Quantum control and manipulation of donor electrons in Si-based quantum computing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/105/12/10.1063/1.3124084
1.
1.T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomary, Nature (London) 437, 1128 (2005).
http://dx.doi.org/10.1038/nature04086
2.
2.F. J. Ruess, L. Oberbeck, M. Y. Simmons, K. E. J. Goh, A. R. Hamilton, T. Hallam, S. R. Schofield, N. J. Curson, and R. G. Clark, Nano Lett. 4, 1969 (2004).
http://dx.doi.org/10.1021/nl048808v
3.
3.F. J. Rueß, W. Pok, T. C. G. Reusch, M. J. Butcher, K. E. J. Goh, L. Oberbeck, G. Spappucci, A. R. Hamilton, and M. Y. Simmons, Small 3, 563 (2007).
http://dx.doi.org/10.1002/smll.200600680
4.
4.B. E. Kane, Nature (London) 393, 133 (1998).
http://dx.doi.org/10.1038/30156
6.
6.R. Vrijen, E. Yablonovitch, K. Wang, H. -W. Jiang, A. Balandin, V. Roychowdhury, T. Mor, and D. DiVincenzo, Phys. Rev. A 62, 012306 (2000).
http://dx.doi.org/10.1103/PhysRevA.62.012306
7.
7.A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, Phys. Rev. B 68, 193207 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.193207
8.
8.R. de Sousa and S. Das Sarma, Phys. Rev. B 68, 115322 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.115322
9.
9.W. Witzel, R. de Sousa, and S. Das Sarma, Phys. Rev. B 72, 161306(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.72.161306
10.
10.A. M. Tyryshkin, J. J. L. Morton, S. C. Benjamin, A. Ardavan, G. A. D. Briggs, J. W. Ager, and S. A. Lyon, J. Phys.: Condens. Matter 18, S783 (2006).
http://dx.doi.org/10.1088/0953-8984/18/21/S06
11.
11.P. Shor, Phys. Rev. A 52, R2493 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.R2493
12.
12.D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.120
13.
13.M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
14.
14.A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.4083
15.
15.A. S. Martins, R. B. Capaz, and B. Koiller, Phys. Rev. B 69, 085320 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.085320
16.
16.M. J. Calderón, B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 96, 096802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.096802
17.
17.M. J. Calderón, B. Koiller, and S. Das Sarma, Phys. Rev. B 75, 125311 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125311
18.
18.M. J. Calderón, B. Koiller, and S. Das Sarma, Phys. Rev. B 74, 081302 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.081302
19.
19.A. L. Saraiva, M. J. Calderón, and B. Koiller, Phys. Rev. B 76, 233302 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.233302
20.
20.W. Kohn, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1957), Vol. 5.
21.
21.W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
http://dx.doi.org/10.1103/PhysRev.98.915
22.
22.B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, H. B. Sun, and H. Wiseman, Phys. Rev. B 61, 2961 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.2961
23.
23.B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. B 66, 115201 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.115201
24.
24.T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.437
25.
25.K. Takashina, Y. Ono, A. Fujiwara, Y. Takahashi, and Y. Hirayama, Phys. Rev. Lett. 96, 236801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.236801
26.
26.A. Saraiva, M. J. Calderón, X. Hu, S. Das Sarma, and B. Koiller, e-print arXiv:0901.4702.
27.
27.M. J. Calderón, B. Koiller, and S. Das Sarma, Phys. Rev. B 77, 155302 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.155302
28.
28.G. P. Lansbergen, R. Rahman, C. Wellard, I. Woo, J. Caro, N. Colaert, S. Biesemans, G. Klimeck, L. C. L. Hollenberg, and S. Rogge, Nat. Phys. 4, 656 (2008).
http://dx.doi.org/10.1038/nphys994
29.
29.M. J. Calderón, B. Koiller, and S. Das Sarma, Phys. Rev. B 74, 081302(R) (2006).
http://dx.doi.org/10.1103/PhysRevB.74.081302
30.
30.K. R. Brown, L. Sun, and B. Kane, Appl. Phys. Lett. 88, 213118 (2006).
http://dx.doi.org/10.1063/1.2207557
31.
31.B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2001).
http://dx.doi.org/10.1103/PhysRevLett.88.027903
32.
32.I. Ponomarev, V. Flambaum, and A. Efros, Phys. Rev. B 60, 15848 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.15848
33.
33.E. A. Laird, J. R. Petta, A. C. Johnson, C. M. Marcus, A. Yacoby, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 97, 056801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.056801
34.
34.A. Morello, C. C. Escott, H. Huebl, L. H. Willems van Beveren, L. C.L. Hollenberg, D. N. Jamieson, A. S. Dzurak, and R. Clark, e-print arXiv:0904.1271.
35.
35.A. F. Slachmuylders, B. Partoens, F. Peeters, and W. Magnus, Appl. Phys. Lett. 92, 083104 (2008).
http://dx.doi.org/10.1063/1.2888742
36.
36.T. Schenkel, J. A. Liddle, A. Persaud, A. M. Tyryshkin, S. A. Lyon, R. de Sousa, K. B. Whaley, J. Bokor, J. Shangkuan, and I. Chakarov, Appl. Phys. Lett. 88, 112101 (2006).
http://dx.doi.org/10.1063/1.2182068
37.
37.H. Huebl, F. Hoehne, B. Grolik, A. R. Stegner, M. Stutzmann, and M. S. Brandt, Phys. Rev. Lett. 100, 177602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.177602
38.
38.R. de Sousa, Phys. Rev. B 76, 245306 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.245306
39.
39.B. Koiller, Nat. Phys. 4, 590 (2008).
http://dx.doi.org/10.1038/nphys1045
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/12/10.1063/1.3124084
Loading
/content/aip/journal/jap/105/12/10.1063/1.3124084
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/105/12/10.1063/1.3124084
2009-06-18
2014-07-12

Abstract

Doped Si is a promising candidate for quantum computing due to its scalability properties, long spin coherence times, and the astonishing progress on Si technology and miniaturization in the past few decades. This proposal for a quantum computer ultimately relies on the quantum control of electrons bound to donors near a Si/barrier (e.g., ) interface. We address here several important issues and define critical parameters that establish the conditions that allow the manipulation of donor electrons in Si by means of external electric and magnetic fields.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/105/12/1.3124084.html;jsessionid=fkaoqist0fcbl.x-aip-live-06?itemId=/content/aip/journal/jap/105/12/10.1063/1.3124084&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum control and manipulation of donor electrons in Si-based quantum computing
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/12/10.1063/1.3124084
10.1063/1.3124084
SEARCH_EXPAND_ITEM