1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Midinfrared semiconductor optical metamaterials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/105/12/10.1063/1.3124087
1.
1.V. G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968).
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
2.
2.J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
http://dx.doi.org/10.1109/22.798002
3.
3.J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
4.
4.D. R. Smith, W. J. Padillia, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
5.
5.R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
http://dx.doi.org/10.1126/science.1058847
6.
6.H. O. Moser, B. D. F. Casse, O. Whilhelmi, and B. T. Saw, Phys. Rev. Lett. 94, 063901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.063901
7.
7.M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Science 313, 502 (2006).
http://dx.doi.org/10.1126/science.1129198
8.
8.P. Gay-Balmaz and O. J. F. Martin, J. Appl. Phys. 92, 2929 (2002).
http://dx.doi.org/10.1063/1.1497452
9.
9.T. Koschny, M. Kafesaki, E. N. Economou, and S. M. Soukoulis, Phys. Rev. Lett. 93, 107402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.107402
10.
10.V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychec, V. P. Drachev, and A. K. Kildishev, Opt. Lett. 30, 3356 (2005).
http://dx.doi.org/10.1364/OL.30.003356
11.
11.S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.137404
12.
12.S. Zhang, W. Fan, K. J. Malloy, and S. R. J. Brueck, J. Opt. Soc. Am. B 23, 434 (2006).
http://dx.doi.org/10.1364/JOSAB.23.000434
13.
13.V. M. Shalaev, Nat. Photonics 1, 41 (2007).
http://dx.doi.org/10.1038/nphoton.2006.49
14.
14.J. B. Pendry, Science 306, 1353 (2004).
http://dx.doi.org/10.1126/science.1104467
15.
15.V. A. Podolskiy and E. E. Narimanov, Phys. Rev. B 71, 201101 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.201101
16.
16.A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, Nature Mater. 6, 946 (2007).
http://dx.doi.org/10.1038/nmat2033
17.
17.I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, Microwave Opt. Technol. Lett. 31, 129 (2001).
http://dx.doi.org/10.1002/mop.1378
18.
18.V. G. Veselago and E. E. Narimanov, Nature Mater. 5, 759 (2006).
http://dx.doi.org/10.1038/nmat1746
19.
19.T. M. Grzegorczyk, M. Nikku, X. Chen, B. Wu, and J. A. Kong, IEEE Trans. Microwave Theory Tech. 53, 1443 (2005).
http://dx.doi.org/10.1109/TMTT.2005.845206
20.
20.G. Almogy, A. Shakouri, and A. Yariv, Appl. Phys. Lett. 63, 2720 (1993).
http://dx.doi.org/10.1063/1.110365
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/12/10.1063/1.3124087
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Calculated permittivity tensor, and , using the effective medium approximation for an -InGaAs/-AlInAs sample with . The shaded yellow region shows the spectral region where the anisotropy results in negative refraction for all angles of incidence. The inset shows the orientation of the electric field and the components of the permittivity; from Ref. 16.

Image of FIG. 2.

Click to view

FIG. 2.

Numerical calculations of refraction across an air-metamaterial interface for a monochromatic, TM polarized Gaussian beam; from Ref. 16.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Select traces of the TM reflectance, , vs wavelength for a simulated half-infinite metamaterial with and for light incident from air. (b) Logarithmic color plot of vs wavelength and incidence angle assembled from many traces such as those in (a). The solid white curve marks the angle corresponding to the Brewster angle for each wavelength. (c) Calculated TE reflectance vs wavelength and incident angle for the same metamaterial as above.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Select traces of the TM transmittance, , for a simulated metamaterial with and a thickness of on top of an InP substrate for light incident from air. (b) Color plot of vs wavelength and incidence angle assembled from many traces as those shown in (a).

Image of FIG. 5.

Click to view

FIG. 5.

Summary of the samples characterized in the study. The filled symbols are for samples grown by MBE and the open symbols are for the sample grown by MOCVD. The squares show the critical wavelength, , for the different samples and the vertical bars indicate the extent of the spectral region with negative refraction; the dashed bars indicate that the long wavelength limit was extrapolated using a theoretical model because the region was beyond the detector cutoff. The circles represent the extracted doping density from transmission measurements.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Measured TM/TE reflectance for sample E with an epitaxial thickness of and . (b) Measured TM/TE reflectance for the high-doped, , isotropic control. (c) Measured TM/TE reflectance for sample F grown by MOCVD with .

Image of FIG. 7.

Click to view

FIG. 7.

Measured TM/TE transmittance vs wavelength and incidence angle for sample E with an epitaxial thickness of and .

Image of FIG. 8.

Click to view

FIG. 8.

Measured TM transmission spectra of a degenerately doped quantum well superlattice for several incident angles.

Image of FIG. 9.

Click to view

FIG. 9.

(a) Measured TM/TE reflectance vs incident angle and wavelength for a degenerately doped quantum well superlattice. (b) Measured TM/TE reflectance vs incident angle and wavelength for a quantum well superlattice doped .

Image of FIG. 10.

Click to view

FIG. 10.

Measured (a) TE and (b) TM reflectance of degenerately doped quantum wells exhibiting low reflection resonances for several incident angles. Measured (c) TE and (d) TM reflectance after partial removal of the epitaxial layer and application of of different thicknesses.

Loading

Article metrics loading...

/content/aip/journal/jap/105/12/10.1063/1.3124087
2009-06-18
2014-04-23

Abstract

We report on a novel class of semiconductor metamaterials that employ a strongly anisotropic dielectric function to achieve negative refraction in the midinfrared region of the spectrum, . We present two types of metamaterials, layered highly doped/undoped heterostructures and quantum well superlattices that are highly anisotropic. Contrary to other optical metamaterials these heterostructure systems are optically thick (up to thick), planar, and require no additional fabrication steps beyond the initial growth. Using transmission and reflection measurements and modeling of the highly doped heterostructures, we demonstrate that these materials exhibit negative refraction. For the highly dopedquantum well superlattices, we demonstrate anomalous reflection due to the strong anisotropy of the material but a determination of the sign of refraction is still difficult. This new class of semiconductor metamaterials has great potential for waveguiding and imaging applications in the long-wave infrared.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/105/12/1.3124087.html;jsessionid=5snhvegpt6ipl.x-aip-live-06?itemId=/content/aip/journal/jap/105/12/10.1063/1.3124087&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Midinfrared semiconductor optical metamaterials
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/12/10.1063/1.3124087
10.1063/1.3124087
SEARCH_EXPAND_ITEM