Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.U. Özgür, Ya. I. Alimov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S. -J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
2.M. Wraback, H. Shen, S. Liang, C. R. Gorla, and Y. Lu, Appl. Phys. Lett. 74, 507 (1999).
3.D. C. Reynolds, D. C. Look, and B. Jogai, Solid State Commun. 99, 873 (1996).
4.E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, Appl. Phys. Lett. 85, 2541 (2004).
5.M. Godlewski, E. Guziewicz, J. Szade, A. Wójcik-Głodowska, Ł. Wachnicki, T. Krajewski, K. Kopalko, R. Jakieła, S. Yatsunenko, E. Przeździecka, P. Kruszewski, N. Huby, G. Tallarida, and S. Ferrari, E-MRS Spring Meeting Proceedings, 2008 (unpublished).
6.A. Wójcik, M. Godlewski, E. Guziewicz, R. Minikayev, and W. Paszkowicz, J. Cryst. Growth 310, 284 (2008).
7.I. A. Kowalik, E. Guziewicz, K. Kopalko, S. Yatsunenko, M. Godlewski, and A. Wójcik, Acta Phys. Pol. A 112, 401 (2007).
8.S. Keun Kim, C. H. Hwang, S. H. Ko Park, and S. J. Yun, Thin Solid Films 478, 103 (2005).
9.S. H. Ko Park, C. S. Hwang, H. S. Kwack, J. H. Lee, and H. Y. Chu, Electrochem. Solid-State Lett. 9, G299 (2006).
10.T. Krajewski, E. Guziewicz, M. Godlewski, Ł. Wachnicki, I. A. Kowalik, A. Wójcik, M. Łukasiewicz, K. Kopalko, V. Ossiniy, and M. Guziewicz, Microelectron. J. (unpublished).
11.Polyethylene terephthalate (MYLAR®) see
12.M. Johnson, A. Al-Shamma, D. Bosch, M. Crowley, M. Farmwald, L. Fasoli, A. Ilkbahar, B. Kleveland, T. Lee, L. Tz-yi, N. Quang, R. Scheuerlein, K. So, and T. Thorp, IEEE J. Solid-State Circuits 38, 1920 (2003).
13.C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plumer, and K. C. Saraswat, Appl. Phys. Lett. 83, 3275 (2003).
14.P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Jr., Appl. Phys. Lett. 82, 1117 (2003).
15.L. -Y. Chen, W. -H. Chen, J. -J. Wang, F. C.-N. Hong, and Y. -K. Su, Appl. Phys. Lett. 85, 5628 (2004).
16.H. -H. Hsieh and C. -C. Wu, Appl. Phys. Lett. 89, 041109 (2006).
17.S. Masuda, K. Kitamura, Y. Okumura, and S. Miyatake, J. Appl. Phys. 93, 1624 (2003).
18.J. Siddiqui, E. Cagin, D. Chen, and J. D. Phillips, Appl. Phys. Lett. 88, 212903 (2006).
19.J. Lim and C. Lee, Thin Solid Films 515, 3335 (2007).
20.J. Lim, K. Shin, H. W. Kim, and C. Lee, J. Lumin. 109, 181 (2004).
21.S. Keun Kim, C. S. Hwang, S. H.-K. Park, and S. S. J. Yun, Thin Solid Films 478, 103 (2005).
22.E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Ossiniy, A. Wójcik, S. Yatsunenko, E. Łusakowska, W. Paszkowicz, and M. Guziewicz, J. Appl. Phys. 103, 033515 (2008).
23.I. A. Kowalik, E. Guziewicz, K. Kopalko, S. Yatsunenko, A. Wójcik, M. Godlewski, P. Dłużewski, E. Łusakowska, and W. Paszkowicz, J. Cryst. Growth (unpublished).
24.N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, and V. Osinniy, Appl. Phys. Lett. 92, 023502 (2008).
25.N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
26.B. Theys, V. Sallet, F. Jomart, A. Lusson, J. -F. Rommeluere, and Z. Teukam, J. Appl. Phys. 91, 3922 (2002).
27.S. B. Zhang, S. -H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).
28.M. Prà, S. Schuster, C. Erlen, G. Csaba, P. Lugli, ESSDERC 2007, München, September 2008 (unpublished).
29.U. Özgür and H. Morkoc, in Zinc Oxide, Bulk, Thin Films and Nanostructures, Processing, Properties and Applications, edited by B. C. Jagadsh and S. Pearton (Elsevier, New York, 2006).

Data & Media loading...


Article metrics loading...



We report on zinc oxide thin filmsgrown by atomic layer deposition at a low temperature, which is compatible with a low thermal budget required for some novel electronic devices. By selecting appropriate precursors and process parameters, we were able to obtain films with controllable electrical parameters, from heavily -type to the resistive ones. Optimization of the growth process together with the low temperature deposition led to ZnOthin films, in which no defect-related photoluminescence bands are observed. Such films show anticorrelation between mobility and free-electron concentration, which indicates that low electron concentration is a result of lower number of defects rather than the self-compensation effect.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd