Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature (London) 443, 409 (2006).
2.R. Balili, V. Hartwell, D. W. Snoke, L. Pfeiffer, and K. West, Science 316, 1007 (2007).
3.S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel, and Y. Yamamoto, Nat. Phys. 4, 700 (2008).
4.M. Richard, A. Baas, I. Carusotto, R. André, Le Si Dang, B. Deveaud-Plédran, K. G. Lagoudakis, and M. Wouters, Nat. Phys. 4, 706 (2008).
5.A. P. Love, D. N. Krizhanovskii, D. M. Whittaker, R. Bouchekioua, D. Sanvitto, S. Al Rizeiqi, R. Bradley, M. S. Skolnick, P. R. Eastham, R. André, and Le Si Dang, Phys. Rev. Lett. 101, 067404 (2008).
6.J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G. Malpuech, G. Baldassarri Höger von Högersthal, E. Feltin, J. F. - Carlin, and N. Grandjean, Phys. Rev. Lett. 101, 136409 (2008).
7.D. Ballarini, D. Sanvitto, A. Amo, L. Viña, M. Wouters, I. Carusotto, A. Lemaitre, and J. Bloch, Phys. Rev. Lett. 102, 056402 (2009).
8.A. Kavokin and G. Malpeuch, Cavity Polaritons (Elsevier, New York, 2003).
9.I. Carusotto and C. Ciuti, Phys. Rev. B 72, 125335 (2005).
10.D. Whittaker, Phys. Rev. B 63, 193305 (2001).
11.D. Bajoni, P. Senellart, A. Lemaitre, and J. Bloch, Phys. Rev. B 76, 201305(R) (2007).
12.D. W. Snoke, Solid State Commun. 146, 73 (2008).
13.M. Stern, V. Garmider, V. Umansky, and I. Bar-Joseph, Phys. Rev. Lett. 100, 256402 (2008).
14.R. Balili, B. Nelsen, D. W. Snoke, L. Pfeiffer, and K. West, Phys. Rev. B 79, 075319 (2009).
15.R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, Phys. Rev. B 53, 10995 (1996).
16.For a basic mean-field theory of polariton condensation in a trap, see O. L. Berman, Yu. E. Lozovik, and D. W. Snoke, Phys. Rev. B 77, 155317 (2008).
17.D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, Phys. Rev. Lett. 100, 047401 (2008).

Data & Media loading...


Article metrics loading...



We have used stress to create a harmonic potential for polaritons in GaAs microcavities and have previously reported that the polaritons undergo spontaneous coherence in the trap. In this paper we present results for both trapped conditions and resonant, nontrapped conditions in the same sample. We find that the results are qualitatively different with two distinct types of transitions. At low density in the trap, the polaritons remain in the strong coupling regime while going through the threshold for onset of coherence; at higher density, there is a different threshold behavior, which occurs with weak coupling and can be identified with lasing; this transition occurs both with and without a trap. The transition at lower density can therefore be identified as a type of nonequilibrium Bose–Einstein condensation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd