Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, Nano Lett. 6, 413 (2006).
2.S. Roth, S. Blumentritt, M. Burghard, E. Cammi, D. Carroll, S. Curran, G. Dusberg, K. Liu, J. Muster, G. Philipp, and T. Rabenau, Synth. Met. 94, 105 (1998).
3.T. Kamata, S. Curran, S. Roth, T. Fukaya, H. Matsuda, and F. Mizukami, Synth. Met. 83, 267 (1996).
4.J. D. Carey, R. C. Smith, and S. R.P. Silva, J. Mater. Sci.: Mater. Electron. 17, 405 (2006).
5.M. Zhang, K. R. Atkinson, and R. H. Baughman, Science 306, 1358 (2004).
6.D. L. Carroll, P. Redlich, P. M. Ajayan, S. Curran, S. Roth, and M. Ruhle, Carbon 36, 753 (1998).
7.H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).
8.W. Blau, H. J. Byrne, D. J. Cardin, J. Dennis, J. P. Hare, H. W. Kroto, R. Taylor, and D. R.M. Walton, Phys. Rev. Lett. 67, 1423 (1991).
9.H. J. Byrne, A. T. Werner, D. O'Brien, W. K. Maser, M. Kaiser, L. Akselrod, W. W. Rühle, and S. Roth, Mol. Cryst. Liq. Cryst. 256, 259 (1994).
10.Y. C. Zhang and X. Wang, Int. J. Solids Struct. 42, 5399 (2005).
11.D. -W. Pang, Y. -D. Zhao, P. -F. Fang, J. -K. Cheng, Y. -Y. Chen, Y. -P. Qi, and H. D. Abruna, J. Electroanal. Chem. 567, 339 (2004).
12.R. M. Fleming, A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, R. C. Haddon, S. M. Zahurak, and A. V. Makhija, Nature (London) 352, 787 (1991).
13.P. M. Ajayan, Nature (London) 427, 402 (2004).
14.S. Iijima, Nature (London) 354, 56 (1991).
15.S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).
16.E. T. Thostenson, Z. Ren, and T. W. Chou, Compos. Sci. Technol. 61, 1899 (2001).
17.M. Terrones, A. Jorio, M. Endo, A. M. Rao, Y. A. Kim, T. Hayashi, H. Terrones, J. C. Charlier, G. Dresselhaus, and M. S. Dresselhaus, Mater. Today 7, 30 (2004).
18.D. L. Carroll, P. M. Ajayan, and S. Curran, J. Mater. Res. 13, 2389 (1998).
19.N. Chakrapani, S. Curran, B. Wei, P. M. Ajayan, A. Carrillo, and R. S. Kane, J. Mater. Res. 18, 2515 (2003).
20.S. A. Curran, J. Cech, D. Zhang, J. L. Dewald, A. Avadhanula, M. Kandadai, and S. Roth, J. Mater. Res. 21, 1012 (2006).
21.S. Roth, S. Blumentritt, M. Burghard, O. Jaschinski, K. Liu, J. Muster, G. Philipp, F. Zha, P. Redlich, D. L. Carrol, P. M. Ajayan, S. Curran, and G. Dusberg, Thin Solid Films 331, 45 (1998).
22.L. Henrard, A. Loiseau, C. Journet, and P. Bernier, Eur. Phys. J. B 13, 661 (2000).
23.E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).
24.A. Hirsch, Angew. Chem., Int. Ed. 41, 1853 (2002).<1853::AID-ANIE1853>3.0.CO;2-N
25.A. B. Dalton, H. J. Byrne, J. N. Coleman, S. Curran, A. P. Davey, B. McCarthy, and W. Blau, Synth. Met. 102, 1176 (1999).
26.R. Andrews and M. C. Weisenberger, Curr. Opin. Solid State Mater. Sci. 8, 31 (2004).
27.S. Roth, M. Burghard, and G. Leising, Curr. Opin. Solid State Mater. Sci. 3, 209 (1998).
28.S. A. Curran, A. V. Ellis, A. Vijayaraghavan, and P. M. Ajayan, J. Chem. Phys. 120, 4886 (2004).
29.C. -S. Zhang, Q. -Q. Ni, S. -Y. Fu, and K. Kurashiki, Compos. Sci. Technol. 67, 2973 (2007).
30.J. G. Smith, Jr., J. W. Connell, D. M. Delozier, P. T. Lillehei, K. A. Watson, Y. Lin, B. Zhou, and Y. P. Sun, Polymer 45, 825 (2004).
31.K. Ahmad, W. Pan, and S. -L. Shi, Appl. Phys. Lett. 89, 133122 (2006).
32.P. Jeevanandam and S. Vasudevan, J. Chem. Phys. 109, 8102 (1998).
33.S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, Macromolecules 36, 5187 (2003).
34.J. N. Coleman, S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, Phys. Rev. B 58, R7492 (1998).
35.P. Dutta, S. Biswas, M. Ghosh, S. K. De, and S. Chatterjee, Synth. Met. 122, 455 (2001).
36.B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, and W. J. Blau, J. Appl. Phys. 92, 4024 (2002).
37.Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. -C. Chung, and H. G. Yoon, Carbon 43, 23 (2005).
38.P. Dutta, S. Biswas, and S. K. De, J. Phys.: Condens. Matter 13, 9187 (2001).
39.S. Sindhu, M. R. Anantharaman, B. Thampi, K. A. Malini, and P. Kurian, Bull. Mater. Sci. 25, 599 (2002).
40.F. M. Blighe, Y. R. Hernandez, W. J. Blau, and J. N. Coleman, Adv. Mater. (Weinheim, Ger.) 19, 4443 (2007).

Data & Media loading...


Article metrics loading...



Acid-treated and pristine chemical vapor deposition grown multiwalled carbon nanotube(MWNT) and poly(bisphenol A carbonate) (PC) composites were prepared through a simple solution blending with varied nanotube weight fractions. The electrical conductivities of the composites can be described by the scaling law based on percolation theory with unprecedented high saturated ac conductivity of pristine nanotubes and acid-treated nanotubes, which correlates well with the dc behavior. We attribute the high saturated conductivities to managing the dispersions, rather than looking to have a well dispersed three-dimensional network thin film. The comparison was made between acid-treated nanotubes and pristine nanotube, both dispersed in PC at various loadings. It was found that the pristine nanotubes in PC possessed an even higher conductivity than the more evenly dispersed composites consisting of lightly acid-treated MWNT in PC.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd