1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electrical transport measurements of highly conductive carbon nanotube/poly(bisphenol A carbonate) composite
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/105/7/10.1063/1.3073938
1.
1.Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, Nano Lett. 6, 413 (2006).
http://dx.doi.org/10.1021/nl052238x
2.
2.S. Roth, S. Blumentritt, M. Burghard, E. Cammi, D. Carroll, S. Curran, G. Dusberg, K. Liu, J. Muster, G. Philipp, and T. Rabenau, Synth. Met. 94, 105 (1998).
http://dx.doi.org/10.1016/S0379-6779(97)04153-2
3.
3.T. Kamata, S. Curran, S. Roth, T. Fukaya, H. Matsuda, and F. Mizukami, Synth. Met. 83, 267 (1996).
http://dx.doi.org/10.1016/S0379-6779(96)04515-8
4.
4.J. D. Carey, R. C. Smith, and S. R.P. Silva, J. Mater. Sci.: Mater. Electron. 17, 405 (2006).
http://dx.doi.org/10.1007/s10854-006-8087-6
5.
5.M. Zhang, K. R. Atkinson, and R. H. Baughman, Science 306, 1358 (2004).
http://dx.doi.org/10.1126/science.1104276
6.
6.D. L. Carroll, P. Redlich, P. M. Ajayan, S. Curran, S. Roth, and M. Ruhle, Carbon 36, 753 (1998).
http://dx.doi.org/10.1016/S0008-6223(98)00048-7
7.
7.H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).
http://dx.doi.org/10.1038/318162a0
8.
8.W. Blau, H. J. Byrne, D. J. Cardin, J. Dennis, J. P. Hare, H. W. Kroto, R. Taylor, and D. R.M. Walton, Phys. Rev. Lett. 67, 1423 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.1423
9.
9.H. J. Byrne, A. T. Werner, D. O'Brien, W. K. Maser, M. Kaiser, L. Akselrod, W. W. Rühle, and S. Roth, Mol. Cryst. Liq. Cryst. 256, 259 (1994).
http://dx.doi.org/10.1080/10587259408039255
10.
10.Y. C. Zhang and X. Wang, Int. J. Solids Struct. 42, 5399 (2005).
http://dx.doi.org/10.1016/j.ijsolstr.2005.02.038
11.
11.D. -W. Pang, Y. -D. Zhao, P. -F. Fang, J. -K. Cheng, Y. -Y. Chen, Y. -P. Qi, and H. D. Abruna, J. Electroanal. Chem. 567, 339 (2004).
12.
12.R. M. Fleming, A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, R. C. Haddon, S. M. Zahurak, and A. V. Makhija, Nature (London) 352, 787 (1991).
http://dx.doi.org/10.1038/352787a0
13.
13.P. M. Ajayan, Nature (London) 427, 402 (2004).
http://dx.doi.org/10.1038/427402a
14.
14.S. Iijima, Nature (London) 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
15.
15.S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).
http://dx.doi.org/10.1038/363603a0
16.
16.E. T. Thostenson, Z. Ren, and T. W. Chou, Compos. Sci. Technol. 61, 1899 (2001).
http://dx.doi.org/10.1016/S0266-3538(01)00094-X
17.
17.M. Terrones, A. Jorio, M. Endo, A. M. Rao, Y. A. Kim, T. Hayashi, H. Terrones, J. C. Charlier, G. Dresselhaus, and M. S. Dresselhaus, Mater. Today 7, 30 (2004).
http://dx.doi.org/10.1016/S1369-7021(04)00447-X
18.
18.D. L. Carroll, P. M. Ajayan, and S. Curran, J. Mater. Res. 13, 2389 (1998).
19.
19.N. Chakrapani, S. Curran, B. Wei, P. M. Ajayan, A. Carrillo, and R. S. Kane, J. Mater. Res. 18, 2515 (2003).
20.
20.S. A. Curran, J. Cech, D. Zhang, J. L. Dewald, A. Avadhanula, M. Kandadai, and S. Roth, J. Mater. Res. 21, 1012 (2006).
http://dx.doi.org/10.1557/jmr.2006.0125
21.
21.S. Roth, S. Blumentritt, M. Burghard, O. Jaschinski, K. Liu, J. Muster, G. Philipp, F. Zha, P. Redlich, D. L. Carrol, P. M. Ajayan, S. Curran, and G. Dusberg, Thin Solid Films 331, 45 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00944-4
22.
22.L. Henrard, A. Loiseau, C. Journet, and P. Bernier, Eur. Phys. J. B 13, 661 (2000).
http://dx.doi.org/10.1007/s100510050083
23.
23.E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4502
24.
24.A. Hirsch, Angew. Chem., Int. Ed. 41, 1853 (2002).
http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
25.
25.A. B. Dalton, H. J. Byrne, J. N. Coleman, S. Curran, A. P. Davey, B. McCarthy, and W. Blau, Synth. Met. 102, 1176 (1999).
http://dx.doi.org/10.1016/S0379-6779(98)01067-4
26.
26.R. Andrews and M. C. Weisenberger, Curr. Opin. Solid State Mater. Sci. 8, 31 (2004).
http://dx.doi.org/10.1016/j.cossms.2003.10.006
27.
27.S. Roth, M. Burghard, and G. Leising, Curr. Opin. Solid State Mater. Sci. 3, 209 (1998).
28.
28.S. A. Curran, A. V. Ellis, A. Vijayaraghavan, and P. M. Ajayan, J. Chem. Phys. 120, 4886 (2004).
http://dx.doi.org/10.1063/1.1644109
29.
29.C. -S. Zhang, Q. -Q. Ni, S. -Y. Fu, and K. Kurashiki, Compos. Sci. Technol. 67, 2973 (2007).
30.
30.J. G. Smith, Jr., J. W. Connell, D. M. Delozier, P. T. Lillehei, K. A. Watson, Y. Lin, B. Zhou, and Y. P. Sun, Polymer 45, 825 (2004).
http://dx.doi.org/10.1016/j.polymer.2003.11.024
31.
31.K. Ahmad, W. Pan, and S. -L. Shi, Appl. Phys. Lett. 89, 133122 (2006).
http://dx.doi.org/10.1063/1.2357920
32.
32.P. Jeevanandam and S. Vasudevan, J. Chem. Phys. 109, 8102 (1998).
http://dx.doi.org/10.1063/1.477458
33.
33.S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, Macromolecules 36, 5187 (2003).
http://dx.doi.org/10.1021/ma021263b
34.
34.J. N. Coleman, S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, Phys. Rev. B 58, R7492 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R7492
35.
35.P. Dutta, S. Biswas, M. Ghosh, S. K. De, and S. Chatterjee, Synth. Met. 122, 455 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)00588-9
36.
36.B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, and W. J. Blau, J. Appl. Phys. 92, 4024 (2002).
http://dx.doi.org/10.1063/1.1506397
37.
37.Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. -C. Chung, and H. G. Yoon, Carbon 43, 23 (2005).
http://dx.doi.org/10.1016/j.carbon.2004.08.015
38.
38.P. Dutta, S. Biswas, and S. K. De, J. Phys.: Condens. Matter 13, 9187 (2001).
http://dx.doi.org/10.1088/0953-8984/13/41/310
39.
39.S. Sindhu, M. R. Anantharaman, B. Thampi, K. A. Malini, and P. Kurian, Bull. Mater. Sci. 25, 599 (2002).
40.
40.F. M. Blighe, Y. R. Hernandez, W. J. Blau, and J. N. Coleman, Adv. Mater. (Weinheim, Ger.) 19, 4443 (2007).
http://dx.doi.org/10.1002/adma.200602912
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/7/10.1063/1.3073938
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) ac and dc conductivities of acid-treated MWNT with PC composites at different MWNT loadings varying between 0 and ; the red and black lines are curve fittings based on Eq. (1). (b) ac and dc conductivities of pristine MWNT with PC composites at different MWNT loadings varying between 0 and ; the red and black lines are curve fittings based on Eq. (1).

Image of FIG. 2.

Click to view

FIG. 2.

(a) Total ac conductivities dependence on frequency at different loadings of acid-treated MWNT with PC composites, respectively. (b) Total ac conductivity dependence on frequency at different loadings of pristine MWNT with PC composites, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

(a) The plot of ln( or ) vs of acid-treated MWNT/PC composites. (b) The plot of ln( or ) vs of pristine MWNT/PC composites.

Image of FIG. 4.

Click to view

FIG. 4.

(a) The universal master curves of the ac conductivity of acid-treated MWNT/PC at varied MWNT loadings. (b) The universal master curves of the ac conductivity of pristine MWNT/PC at varied MWNT loadings.

Loading

Article metrics loading...

/content/aip/journal/jap/105/7/10.1063/1.3073938
2009-04-13
2014-04-21

Abstract

Acid-treated and pristine chemical vapor deposition grown multiwalled carbon nanotube(MWNT) and poly(bisphenol A carbonate) (PC) composites were prepared through a simple solution blending with varied nanotube weight fractions. The electrical conductivities of the composites can be described by the scaling law based on percolation theory with unprecedented high saturated ac conductivity of pristine nanotubes and acid-treated nanotubes, which correlates well with the dc behavior. We attribute the high saturated conductivities to managing the dispersions, rather than looking to have a well dispersed three-dimensional network thin film. The comparison was made between acid-treated nanotubes and pristine nanotube, both dispersed in PC at various loadings. It was found that the pristine nanotubes in PC possessed an even higher conductivity than the more evenly dispersed composites consisting of lightly acid-treated MWNT in PC.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/105/7/1.3073938.html;jsessionid=7ahfk9lg73gb7.x-aip-live-06?itemId=/content/aip/journal/jap/105/7/10.1063/1.3073938&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrical transport measurements of highly conductive carbon nanotube/poly(bisphenol A carbonate) composite
http://aip.metastore.ingenta.com/content/aip/journal/jap/105/7/10.1063/1.3073938
10.1063/1.3073938
SEARCH_EXPAND_ITEM