1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Design optimization of piezoresistive cantilevers for force sensing in air and water
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/106/6/10.1063/1.3224965
1.
1.G. Villanueva, J. Plaza, J. Montserrat, F. Perez-Murano, and J. Bausells, Microelectron. Eng. 85, 1120 (2008).
http://dx.doi.org/10.1016/j.mee.2008.01.082
2.
2.S. J. - Park, M. B. Goodman, and B. L. Pruitt, Proc. Natl. Acad. Sci. U.S.A. 104, 17376 (2007).
http://dx.doi.org/10.1073/pnas.0702138104
3.
3.G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
4.
4.F. T. Goericke and W. P. King, IEEE Sens. J. 8, 1404 (2008).
http://dx.doi.org/10.1109/JSEN.2008.920706
5.
5.M. Tortonese, R. C. Barrett, and C. F. Quate, Appl. Phys. Lett. 62, 834 (1993).
http://dx.doi.org/10.1063/1.108593
6.
6.A. Barlian, W.-T. Park, J. Mallon, A. Rastegar, and B. Pruitt, Proc. IEEE 97, 513 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2013612
7.
7.S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, Appl. Phys. Lett. 73, 1742 (1998).
http://dx.doi.org/10.1063/1.122263
8.
8.R. P. Ried, H. J. Mamin, B. D. Terris, L. S. Fan, and D. Rugar, Solid State Sensors and Actuators 1, 447 (1997).
http://dx.doi.org/10.1109/SENSOR.1997.613682
9.
9.C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, Nature (London) 414, 293 (2001).
http://dx.doi.org/10.1038/35104535
10.
10.J. Harley and T. Kenny, J. Microelectromech. Syst. 9, 226 (2000).
11.
11.X. Yu, J. Thaysen, O. Hansen, and A. Boisen, J. Appl. Phys. 92, 6296 (2002).
http://dx.doi.org/10.1063/1.1493660
12.
12.E. Chow, H. Soh, H. Lee, J. Adams, S. Minne, G. Yaralioglu, A. Atalar, C. Quate, and T. Kenny, Sens. Actuators, A 83, 118 (2000).
http://dx.doi.org/10.1016/S0924-4247(99)00381-7
13.
13.Z. Wang, R. Yue, R. Zhang, and L. Liu, Sens. Actuators, A 120, 325 (2005).
http://dx.doi.org/10.1016/j.sna.2004.12.006
14.
14.M. Papila, R. Haftka, T. Nishida, and M. Sheplak, J. Microelectromech. Syst. 15, 1632 (2006).
http://dx.doi.org/10.1109/JMEMS.2006.883884
15.
15.M. Liu, K. Maute, and D. M. Frangopol, Reliab. Eng. Syst. Saf. 92, 1333 (2007).
http://dx.doi.org/10.1016/j.ress.2006.09.007
16.
16.T. Duc, J. Creemer, and P. Sarro, IEEE Sens. J. 7, 96 (2007).
http://dx.doi.org/10.1109/JSEN.2006.886992
17.
17.J. Creemer, F. Fruett, G. Meijer, and P. French, IEEE Sens. J. 1, 98 (2001).
http://dx.doi.org/10.1109/JSEN.2001.936927
18.
18.M. Doelle, D. Mager, P. Ruther, and O. Paul, Sens. Actuators, A 127, 261 (2006).
http://dx.doi.org/10.1016/j.sna.2005.08.014
19.
19.F. Goericke, J. Lee, and W. P. King, Sens. Actuators, A 143, 181 (2008).
http://dx.doi.org/10.1016/j.sna.2007.10.049
20.
20.R. Roark and W. Young, Formulas for Stress and Strain (McGraw-Hill, New York, 1975).
21.
21.J. Chen and N. MacDonald, Rev. Sci. Instrum. 75, 276 (2004).
http://dx.doi.org/10.1063/1.1633005
22.
22.Y. Kanda, IEEE Trans. Electron Devices 29, 64 (1982).
23.
23.J. Richter, J. Pedersen, M. Brandbyge, E. Thomsen, and O. Hansen, J. Appl. Phys. 104, 023715 (2008).
http://dx.doi.org/10.1063/1.2960335
24.
24.J. A. Harley and T. W. Kenny, Appl. Phys. Lett. 75, 289 (1999).
http://dx.doi.org/S0003-6951(99)01728-3
25.
25.M. Tortonese, “Force sensors for scanning probe microcopy,” Ph.D. dissertation, Stanford University, 1993.
26.
26.S.-J. Park, A. Rastegar, T. Fung, A. Barlian, J. Mallon, and B. Pruitt, “Optimization of piezoresistive cantilever performance,” Hilton Head Sensors, Actuators and Microsystems Workshop, 2008), p. 3.
27.
27.T. Gabrielson, U. Center, and P. Warminster, IEEE Trans. Electron Devices 40, 903 (1993).
http://dx.doi.org/10.1109/16.210197
28.
28.O. Hansen and A. Boisen, Nanotechnology 10, 51 (1999).
http://dx.doi.org/10.1088/0957-4484/10/1/011
29.
29.M. R. Paul, M. T. Clark, and M. C. Cross, Nanotechnology 17, 4502 (2006).
http://dx.doi.org/10.1088/0957-4484/17/17/037
30.
30.J. Arlett, J. Maloney, B. Gudlewski, and M. Muluneh, Nano Lett. 6, 1000 (2006).
http://dx.doi.org/10.1021/nl060275y
31.
31.S. Senturia, Microsystem Design (Springer, Berlin, 2000).
32.
32.G. Masetti, M. Severi, and S. Solmi, IEEE Trans. Electron Devices 30, 764 (1983).
33.
33.F. Hooge, IEEE Trans. Electron Devices 151, 3 (1994).
http://dx.doi.org/10.1007/1-4020-2170-4
34.
34.J. Mallon, A. Rastegar, A. Barlian, M. Meyer, T. Fung, and B. Pruitt, Appl. Phys. Lett. 92, 3508 (2008).
http://dx.doi.org/10.1063/1.2825466
35.
35.A. Partridge, “Lateral piezoresistive accelerometer with epipoly encapsulation,” Thesis, Stanford University, 2003.
36.
36.C. A. van Eysden and J. E. Sader, J. Appl. Phys. 104, 109901 (2007).
http://dx.doi.org/10.1063/1.3009958
37.
37.C. Pramanik, H. Saha, and U. Gangopadhyay, J. Micromech. Microeng. 16, 2060 (2006).
http://dx.doi.org/10.1088/0960-1317/16/10/019
38.
38.C. Zhu, R. Byrd, P. Lu, and J. Nocedal, ACM Trans. Math. Softw. 23, 550 (1997).
http://dx.doi.org/10.1145/279232.279236
39.
39.G. Vick and K. Whittle, J. Electrochem. Soc. 116, 1142 (1969).
http://dx.doi.org/10.1149/1.2412239
40.
40.F. Trumbore, Micro and Thin-film Electronics: Readings (Holt, Rinehart, and Winston, New York, 1964), p. 177.
41.
41.J. Tsai, Proc. IEEE 57, 1499 (1969).
http://dx.doi.org/10.1109/PROC.1969.7325
http://aip.metastore.ingenta.com/content/aip/journal/jap/106/6/10.1063/1.3224965
Loading
/content/aip/journal/jap/106/6/10.1063/1.3224965
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/106/6/10.1063/1.3224965
2009-09-23
2015-06-03

Abstract

Piezoresistive cantilevers fabricated from dopedsilicon or metal films are commonly used for force, topography, and chemical sensing at the micro- and macroscales. Proper design is required to optimize the achievable resolution by maximizing sensitivity while simultaneously minimizing the integrated noise over the bandwidth of interest. Existing analytical design methods are insufficient for modeling complex dopant profiles, design constraints, and nonlinear phenomena such as damping in fluid. Here we present an optimization method based on an analytical piezoresistive cantilever model. We use an existing iterative optimizer to minimimize a performance goal, such as minimum detectable force. The design tool is available as open source software. Optimal cantilever design and performance are found to strongly depend on the measurement bandwidth and the constraints applied. We discuss results for siliconpiezoresistors fabricated by epitaxy and diffusion, but the method can be applied to any dopant profile or material which can be modeled in a similar fashion or extended to other microelectromechanical systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/106/6/1.3224965.html;jsessionid=5lebf8hexwwl.x-aip-live-03?itemId=/content/aip/journal/jap/106/6/10.1063/1.3224965&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Design optimization of piezoresistive cantilevers for force sensing in air and water
http://aip.metastore.ingenta.com/content/aip/journal/jap/106/6/10.1063/1.3224965
10.1063/1.3224965
SEARCH_EXPAND_ITEM