Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/106/7/10.1063/1.3216464
1.
1.N. M. Johnson, A. V. Nurmikko, and S. P. DenBaars, Phys. Today 53(10), 31 (2000).
http://dx.doi.org/10.1063/1.1325190
2.
2.A. R. Powell and L. B. Rowland, Proc. IEEE 90, 942 (2002).
http://dx.doi.org/10.1109/JPROC.2002.1021560
3.
3.S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004).
http://dx.doi.org/10.1116/1.1714985
4.
4.Y. Chen, D. M. Bagnall, H. -J. Koh, K. -T. Park, K. Hiraga, Z. -Q. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
http://dx.doi.org/10.1063/1.368595
5.
5.D. C. Look, Mater. Sci. Eng., B 80, 383 (2001).
http://dx.doi.org/10.1016/S0921-5107(00)00604-8
6.
6.T. Minami, MRS Bull. 25, 38 (2000).
7.
7.A. Nuruddin and J. R. Abelson, Thin Solid Films 394, 48 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)01167-1
8.
8.G. P. Dransfield, Radiat. Prot. Dosim. 91, 271 (2000).
9.
9.D. R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).
10.
10.J. F. Wager, Science 300, 1245 (2003).
http://dx.doi.org/10.1126/science.1085276
11.
11.G. A. Prinz, Science 282, 1660 (1998).
http://dx.doi.org/10.1126/science.282.5394.1660
12.
12.T. Dietl and H. Ohno, MRS Bull. 28, 714 (2003).
13.
13.S. K. Kamilla and S. Basu, Bull. Mater. Sci. 25, 541 (2002).
http://dx.doi.org/10.1007/BF02710546
14.
14.S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M. Samant, Proc. IEEE 91, 661 (2003).
http://dx.doi.org/10.1109/JPROC.2003.811807
15.
15.J. M. Kikkawa and D. D. Awschalom, Nature (London) 397, 139 (1999).
http://dx.doi.org/10.1038/16420
16.
16.I. Zutic, J. Fabian, and S. Das Sarma, Phys. Rev. B 64, 121201 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.121201
17.
17.Y. S. Didosyan, H. Hauser, G. A. Reider, and W. Toriser, J. Appl. Phys. 95, 7339 (2004).
http://dx.doi.org/10.1063/1.1669350
18.
18.T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
19.
19.P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillen, B. Johansson, and G. A. Gehring, Nature Mater. 2, 673 (2003).
http://dx.doi.org/10.1038/nmat984
20.
20.J. M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, J. Cryst. Growth 207, 30 (1999).
http://dx.doi.org/10.1016/S0022-0248(99)00363-2
21.
21.J. W. Smith, M. D. Tokach, R. D. Goodband, J. L. Nelssen, and B. T. Richert, J. Anim. Sci. (Savoy, Ill.) 75, 1861 (1997).
22.
22.Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
23.
23.S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).
http://dx.doi.org/10.1016/j.pmatsci.2004.04.001
24.
24.J. L. Routbort and G. W. Tomlins, Radiat. Eff. Defects Solids 137, 1459 (1995).
http://dx.doi.org/10.1080/10420159508222727
25.
25.E. Kisi and M. M. Elcombe, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C45, 1867 (1989).
http://dx.doi.org/10.1107/S0108270189004269
26.
26.S. Desgreniers, Phys. Rev. B 58, 14102 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14102
27.
27.C. H. Bates, W. B. White, and R. Roy, Science 137, 993 (1962).
http://dx.doi.org/10.1126/science.137.3534.993
28.
28.B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, Phys. Status Solidi B 119, 227 (1983).
http://dx.doi.org/10.1002/pssb.2221190126
29.
29.A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195207
30.
30.S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.075205
31.
31.A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rev. B 61, 15019 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.15019
32.
32.A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165202
33.
33.H. L. Mosbacker, C. Zgrabik, M. J. Hetzer, A. Swain, D. C. Look, G. Cantwell, J. Zhang, J. J. Song, and L. J. Brillson, Appl. Phys. Lett. 91, 072102 (2007).
http://dx.doi.org/10.1063/1.2772664
34.
34.L. J. Brillson, H. L. Mosbacker, M. J. Hetzer, Y. Strzhemechny, G. H. Jessen, D. C. Look, G. Cantwell, J. Zhang, and J. J. Song, Appl. Phys. Lett. 90, 102116 (2007).
http://dx.doi.org/10.1063/1.2711536
35.
35.L. S. Vlasenko and G. D. Watkins, Phys. Rev. B 72, 035203 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035203
36.
36.W. E. Carlos, E. R. Glaser, and D. C. Look, Physica B 308–310, 976 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00850-X
37.
37.P. Erhart and K. Albe, Appl. Phys. Lett. 88, 201918 (2006).
http://dx.doi.org/10.1063/1.2206559
38.
38.F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, Phys. Rev. Lett. 99, 085502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.085502
39.
39.D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, Phys. Rev. Lett. 95, 225502 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.225502
40.
40.F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka, J. Appl. Phys. 90, 824 (2001).
http://dx.doi.org/10.1063/1.1380994
41.
41.T. R. Paudel and W. R. L. Lambrecht, Phys. Rev. B 77, 205202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.205202
42.
42.P. Erhart, A. Klein, and K. Albe, Phys. Rev. B 72, 085213 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085213
43.
43.P. Erhart, K. Albe, and A. Klein, Phys. Rev. B 73, 205203 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205203
44.
44.S. Lany and A. Zunger, Phys. Rev. Lett. 98, 045501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.045501
45.
45.A. Janotti and C. G. Van de Walle, Nature Mater. 6, 44 (2007).
http://dx.doi.org/10.1038/nmat1795
46.
46.F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Phys. Rev. B 77, 245202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245202
47.
47.J. Carrasco, N. Lopez, and F. Illas, Phys. Rev. Lett. 93, 225502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.225502
48.
48.L. S. Vlasenko and G. D. Watkins, Phys. Rev. B 71, 125210 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125210
49.
49.S. M. Evans, N. C. Giles, L. E. Halliburton, and L. A. Kappers, J. Appl. Phys. 103, 043710 (2008).
http://dx.doi.org/10.1063/1.2833432
50.
50.L. E. Halliburton, N. C. Giles, N. Y. Garces, M. Luo, C. C. Xu, L. H. Bai, and L. A. Boatner, Appl. Phys. Lett. 87, 172108 (2005).
http://dx.doi.org/10.1063/1.2117630
51.
51.L. A. Kappers, O. R. Gilliam, S. M. Evans, L. E. Halliburton, and N. C. Giles, Nucl. Instrum. Methods Phys. Res. B 266, 2953 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.03.146
52.
52.K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
http://dx.doi.org/10.1063/1.362349
53.
53.D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, Appl. Phys. A: Mater. Sci. Process. 88, 147 (2007).
http://dx.doi.org/10.1007/s00339-007-3956-2
54.
54.Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).
http://dx.doi.org/10.1063/1.2064308
55.
55.M. A. Reshchikov, H. Morkoç, B. Nemeth, J. Nause, J. Xie, B. Hertog, and A. Osinsky, Physica B 401-402, 358 (2007).
http://dx.doi.org/10.1016/j.physb.2007.08.187
56.
56.A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. 87, 122102 (2005).
http://dx.doi.org/10.1063/1.2053360
57.
57.M. G. Wardle, J. P. Goss, and P. R. Briddon, Phys. Rev. B 72, 155108 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.155108
58.
58.D. Galland and A. Hervé, Phys. Lett. 33A, 1 (1970).
59.
59.T. Chanier, I. Opahle, M. Sargolzaei, R. Hayn, and M. Lannoo, Phys. Rev. Lett. 100, 026405 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.026405
60.
60.T. Sekiguchi, N. Ohashi, and Y. Terada, Jpn. J. Appl. Phys., Part 2 36, L289 (1997).
http://dx.doi.org/10.1143/JJAP.36.L289
61.
61.R. M. Delacruz, R. Pareja, R. Gonzalez, L. A. Boatner, and Y. Chen, Phys. Rev. B 45, 6581 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.6581
62.
62.H. Takenaka and D. J. Singh, Phys. Rev. B 75, 241102(R) (2007).
http://dx.doi.org/10.1103/PhysRevB.75.241102
63.
63.G. Brauer, W. Anwand, W. Skorupa, J. Kuriplach, O. Melikhova, C. Moisson, H. von Wenckstern, H. Schmidt, M. Lorenz, and M. Grundmann, Phys. Rev. B 74, 045208 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045208
64.
64.F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, Phys. Rev. Lett. 91, 205502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.205502
65.
65.Z. Q. Chen, K. Betsuyaku, and A. Kawasuso, Phys. Rev. B 77, 113204 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.113204
66.
66.F. Tuomisto, K. Saarinen, D. C. Look, and G. C. Farlow, Phys. Rev. B 72, 085206 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085206
67.
67.J. Cizek, N. Zaludova, M. Vlach, S. Danis, J. Kuriplach, I. Prochazka, G. Brauer, W. Anwand, D. Grambole, W. Skorupa, R. Gemma, R. Kirchheim, and A. Pundt, J. Appl. Phys. 103, 053508 (2008).
http://dx.doi.org/10.1063/1.2844479
68.
68.Z. Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X. L. Yuan, and T. Sekiguchi, J. Appl. Phys. 94, 4807 (2003).
http://dx.doi.org/10.1063/1.1609050
69.
69.J. Zhong, A. H. Kitai, P. Mascher, and W. Puff, J. Electrochem. Soc. 140, 3644 (1993).
http://dx.doi.org/10.1149/1.2221143
70.
70.S. O. Kucheyev, J. S. Williams, and C. Jagadish, Vacuum 73, 93 (2004).
http://dx.doi.org/10.1016/j.vacuum.2003.12.032
71.
71.Q. L. Gu, C. C. Ling, G. Brauer, W. Anwand, W. Skorupa, Y. F. Hsu, A. B. Djurisic, C. Y. Zhu, S. Fung, and L. W. Lu, Appl. Phys. Lett. 92, 222109 (2008).
http://dx.doi.org/10.1063/1.2940204
72.
72.A. Zubiaga, F. Tuomisto, V. A. Coleman, H. H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, Phys. Rev. B 78, 035125 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035125
73.
73.T. M. Borseth, F. Tuomisto, J. S. Christensen, E. V. Monakhov, B. G. Svensson, and A. Y. Kuznetsov, Phys. Rev. B 77, 045204 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045204
74.
74.Z. Q. Chen, M. Maekawa, S. Yamamoto, A. Kawasuso, X. L. Yuan, T. Sekiguchi, R. Suzuki, and T. Ohdaira, Phys. Rev. B 69, 035210 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.035210
75.
75.Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki, and T. Ohdaira, Phys. Rev. B 71, 115213 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.115213
76.
76.S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, C. Evans, A. J. Nelson, and A. V. Hamza, Phys. Rev. B 67, 094115 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.094115
77.
77.E. H. Khan, S. C. Langford, J. T. Dickinson, L. A. Boatner, and W. P. Hess, Langmuir 25, 1930 (2009).
http://dx.doi.org/10.1021/la804143u
78.
78.J. Schneider and A. Räuber, Z. Naturforsch. A 16, 712 (1961).
79.
79.M. Schulz, Phys. Status Solidi A K5, 27 (1975).
80.
80.D. Block, A. Herve, and R. T. Cox, Phys. Rev. B 25, 6049 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.6049
81.
81.B. K. Meyer, H. Alves, D. M. Hoffman, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffman, M. Strassburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004).
http://dx.doi.org/10.1002/pssb.200301962
82.
82.D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, Solid State Commun. 105, 399 (1998).
http://dx.doi.org/10.1016/S0038-1098(97)10145-4
83.
83.K. Ellmer, J. Phys. D 34, 3097 (2001).
http://dx.doi.org/10.1088/0022-3727/34/21/301
84.
84.S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, Jpn. J. Appl. Phys., Part 2 36, L1078 (1997).
http://dx.doi.org/10.1143/JJAP.36.L1078
85.
85.B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov, Thin Solid Films 260, 19 (1995).
http://dx.doi.org/10.1016/0040-6090(94)09485-3
86.
86.H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, Appl. Phys. Lett. 77, 3761 (2000).
http://dx.doi.org/10.1063/1.1331089
87.
87.B. E. Sernelius, K. -F. Berggren, Z. -C. Jin, I. Hamberg, and C. G. Granqvist, Phys. Rev. B 37, 10244 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.10244
88.
88.M. D. McCluskey and S. J. Jokela, Physica B 401–402, 355 (2007).
http://dx.doi.org/10.1016/j.physb.2007.08.186
89.
89.D. M. Hofmann, A. Hofstaetter, F. Leiter, H. J. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, Phys. Rev. Lett. 88, 045504 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.045504
90.
90.N. H. Nickel and K. Fleischer, Phys. Rev. Lett. 90, 197402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.197402
91.
91.G. Born, A. Hofstaetter, and A. Scharmann, Z. Phys. 240, 163 (1970).
http://dx.doi.org/10.1007/BF01395630
92.
92.R. Laiho, L. S. Vlasenko, and M. P. Vlasenko, J. Appl. Phys. 103, 123709 (2008).
http://dx.doi.org/10.1063/1.2942403
93.
93.C. H. Park, S. B. Zhang, and S. -H. Wei, Phys. Rev. B 66, 073202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.073202
94.
94.A. Zeuner, H. Alves, D. M. Hoffman, B. K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, and M. Dworzak, Phys. Status Solidi B 234, R7 (2002).
http://dx.doi.org/10.1002/1521-3951(200212)234:33.0.CO;2-D
95.
95.L. Wang and N. C. Giles, Appl. Phys. Lett. 84, 3049 (2004).
http://dx.doi.org/10.1063/1.1711162
96.
96.W. Götz and N. M. Johnson, Semiconductors and Semimetals (Academic, New York, 1999), Vol. 57, p. 185.
97.
97.J. Li, S. H. Wei, S. S. Li, and J. B. Xia, Phys. Rev. B 74, 081201 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.081201
98.
98.N. Y. Garces, L. Wang, N. C. Giles, L. E. Halliburton, G. Cantwell, and D. B. Eason, J. Appl. Phys. 94, 519 (2003).
http://dx.doi.org/10.1063/1.1580193
99.
99.P. Fons, H. Tampo, A. V. Kolobov, M. Ohkubo, S. Niki, J. Tominaga, R. Carboni, F. Boscherini, and S. Friedrich, Phys. Rev. Lett. 96, 045504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.045504
100.
100.E. -C. Lee, Y. -S. Kim, Y. -G. Jin, and K. J. Chang, Phys. Rev. B 64, 085120 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085120
101.
101.S. Limpijumnong, X. Li, S. -H. Wei, and S. B. Zhang, Appl. Phys. Lett. 86, 211910 (2005).
http://dx.doi.org/10.1063/1.1931823
102.
102.Y. F. Yan, S. B. Zhang, and S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5723
103.
103.H. Matsui, H. Saeki, T. Kawai, H. Tabata, and B. Mizobuchi, J. Appl. Phys. 95, 5882 (2004).
http://dx.doi.org/10.1063/1.1710724
104.
104.K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997).
http://dx.doi.org/10.1143/JJAP.36.L1453
105.
105.D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
http://dx.doi.org/10.1063/1.1504875
106.
106.X. Li, Y. Yan, T. A. Gessert, C. L. Perkins, D. Young, C. DeHart, M. Young, and T. J. Coutts, J. Vac. Sci. Technol. A 21, 1342 (2003).
http://dx.doi.org/10.1116/1.1584036
107.
107.W. Z. Xu, Z. Z. Ye, T. Zhou, B. H. Zhao, L. P. Zhu, and J. Y. Huang, J. Cryst. Growth 265, 133 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2003.12.061
108.
108.J. F. Rommeluère, L. Svob, F. Jomard, J. Mimila-Arroyo, A. Lusson, V. Sallet, and Y. Marfaing, Appl. Phys. Lett. 83, 287 (2003).
http://dx.doi.org/10.1063/1.1592621
109.
109.J. Z. Wang, G. T. Du, B. J. Zhao, X. T. Yang, Y. T. Zhang, Y. Ma, D. L. Liu, Y. C. Chang, H. S. Wang, H. J. Yang, and S. R. Yang, J. Cryst. Growth 255, 293 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01241-7
110.
110.A. B. M. A. Ashrafi, I. Suemune, H. Kumano, and S. Tanaka, Jpn. J. Appl. Phys., Part 2 41, L1281 (2002).
http://dx.doi.org/10.1143/JJAP.41.L1281
111.
111.H. W. Liang, Y. M. Lu, D. Z. Shen, Y. C. Liu, J. F. Yan, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, and X. W. Fan, Phys. Status Solidi A 202, 1060 (2005).
http://dx.doi.org/10.1002/pssa.200420012
112.
112.Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, and Z. K. Tang, Appl. Phys. Lett. 90, 042113 (2007).
http://dx.doi.org/10.1063/1.2435699
113.
113.C. Wang, Z. G. Ji, K. Liu, Y. Xiang, and Z. Z. Ye, J. Cryst. Growth 259, 279 (2003).
http://dx.doi.org/10.1016/j.jcrysgro.2003.07.002
114.
114.C. -C. Lin, S. Y. Chen, S. Y. Cheng, and H. Y. Lee, Appl. Phys. Lett. 84, 5040 (2004).
http://dx.doi.org/10.1063/1.1763640
115.
115.K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, J. Cryst. Growth 209, 526 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00613-2
116.
116.C. L. Perkins, S. H. Lee, X. N. Lie, S. E. Asher, and T. J. Coutts, J. Appl. Phys. 97, 034907 (2005).
http://dx.doi.org/10.1063/1.1847728
117.
117.L. Li, C. X. Shan, B. H. Li, B. Yao, J. Y. Zhang, D. X. Zhao, Z. Z. Zhang, D. Z. Shen, X. W. Fan, and Y. M. Lu, J. Phys. D 41, 245402 (2008).
http://dx.doi.org/10.1088/0022-3727/41/24/245402
118.
118.B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei, B. H. Li, Y. M. Lv, X. W. Fan, L. X. Guan, G. Z. Xing, C. X. Cong, and Y. P. Xie, J. Appl. Phys. 99, 123510 (2006).
http://dx.doi.org/10.1063/1.2208414
119.
119.A. Soudi, E. H. Khan, J. T. Dickinson, and Y. Gu, Nano Lett. 9, 1844 (2009).
http://dx.doi.org/10.1021/nl803830n
120.
120.W. J. Lee, J. Kang, and K. J. Chang, Phys. Rev. B 73, 024117 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.024117
121.
121.K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park, Appl. Phys. Lett. 83, 63 (2003).
http://dx.doi.org/10.1063/1.1591064
122.
122.F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu, and W. P. Beyermann, Appl. Phys. Lett. 88, 052106 (2006).
http://dx.doi.org/10.1063/1.2170406
123.
123.Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, and D. P. Norton, Appl. Phys. Lett. 83, 1128 (2003).
http://dx.doi.org/10.1063/1.1594835
124.
124.Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, and D. P. Norton, Appl. Phys. Lett. 84, 3474 (2004).
http://dx.doi.org/10.1063/1.1737795
125.
125.U. Wahl, E. Rita, J. G. Correia, A. C. Marques, E. Alves, and J. C. Soares, and ISOLDE Collaboration, Phys. Rev. Lett. 95, 215503 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.215503
126.
126.Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, J. Cryst. Growth 216, 330 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00437-1
127.
127.Y. R. Ryu, T. S. Lee, and H. W. White, Appl. Phys. Lett. 83, 87 (2003).
http://dx.doi.org/10.1063/1.1590423
128.
128.F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, Appl. Phys. Lett. 87, 152101 (2005).
http://dx.doi.org/10.1063/1.2089183
129.
129.O. Bierwagen, T. Ive, C. G. Van de Walle, and J. S. Speck, Appl. Phys. Lett. 93, 242108 (2008).
http://dx.doi.org/10.1063/1.3052930
130.
130.T. M. Barnes, K. Olsen, and C. A. Wolden, Appl. Phys. Lett. 86, 112112 (2005).
http://dx.doi.org/10.1063/1.1884747
131.
131.H. L. Mosbacker, Y. M. Strzhemechny, B. D. White, P. E. Smith, D. C. Look, D. C. Reynolds, C. W. Litton, and L. J. Brillson, Appl. Phys. Lett. 87, 012102 (2005).
http://dx.doi.org/10.1063/1.1984089
132.
132.D. C. Look and B. Claflin, Phys. Status Solidi B 241, 624 (2004).
http://dx.doi.org/10.1002/pssb.200304271
133.
133.A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater. 4, 42 (2005).
http://dx.doi.org/10.1038/nmat1284
134.
134.E. F. Schubert, Light Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006), p. 2.
135.
135.M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, Phys. Rev. B 77, 125215 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125215
136.
136.O. F. Schirmer, J. Phys. Chem. Solids 29, 1407 (1968).
http://dx.doi.org/10.1016/0022-3697(68)90193-5
137.
137.B. K. Meyer, A. Hofstaetter, and V. V. Laguta, Physica B 376–377, 682 (2006).
http://dx.doi.org/10.1016/j.physb.2005.12.171
138.
138.T. M. Borseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, Appl. Phys. Lett. 89, 262112 (2006).
http://dx.doi.org/10.1063/1.2424641
139.
139.D. Zwingel and F. Gärtner, Solid State Commun. 14, 45 (1974).
http://dx.doi.org/10.1016/0038-1098(74)90229-4
140.
140.B. K. Meyer, J. Stehr, A. Hofstaetter, N. Volbers, A. Zeuner, and J. Sann, Appl. Phys. A: Mater. Sci. Process. 88, 119 (2007).
http://dx.doi.org/10.1007/s00339-007-3962-4
141.
141.B. K. Meyer, J. Sann, D. M. Hoffman, C. Neumann, and A. Zeuner, Semicond. Sci. Technol. 20, S62 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/008
142.
142.E. -C. Lee and K. J. Chang, Phys. Rev. B 70, 115210 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115210
143.
143.M. G. Wardle, J. P. Goss, and P. R. Briddon, Phys. Rev. B 71, 155205 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.155205
144.
144.Y. Kanai, Jpn. J. Appl. Phys., Part 1 30, 703 (1991).
http://dx.doi.org/10.1143/JJAP.30.703
145.
145.R. E. Dietz, H. Kamimura, M. D. Sturge, and A. Yariv, Phys. Rev. 132, 1559 (1963).
http://dx.doi.org/10.1103/PhysRev.132.1559
146.
146.N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G. Cantwell, Appl. Phys. Lett. 81, 622 (2002).
http://dx.doi.org/10.1063/1.1494125
147.
147.R. Dingle, Phys. Rev. Lett. 23, 579 (1969).
http://dx.doi.org/10.1103/PhysRevLett.23.579
148.
148.P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffman, and I. Broser, J. Phys.: Condens. Matter 10, 2007 (1998).
http://dx.doi.org/10.1088/0953-8984/10/9/007
149.
149.I. Broser, L. Podlowski, P. Thurian, R. Heitz, and A. Hoffmann, J. Lumin. 60&61, 588 (1994).
http://dx.doi.org/10.1016/0022-2313(94)90224-0
150.
150.A. Cetin, R. Kibar, M. Ayvacikli, N. Can, Ch. Buchal, P. D. Townsend, A. L. Stepanov, T. Karali, and S. Selvi, Nucl. Instrum. Methods Phys. Res. 249, 474 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.03.189
151.
151.J. Huso, J. L. Morrison, J. Mitchell, E. Casey, H. Hoeck, C. Walker, L. Bergman, W. M. Hlaing Oo, and M. D. McCluskey, Appl. Phys. Lett. 94, 061919 (2009).
http://dx.doi.org/10.1063/1.3081628
152.
152.E. Mollwo, G. Müller, and P. Wagner, Solid State Commun. 13, 1283 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90580-2
153.
153.Y. Yan, M. M. Al-Jassim, and S. -H. Wei, Appl. Phys. Lett. 89, 181912 (2006).
http://dx.doi.org/10.1063/1.2378404
154.
154.E. Mollwo, Z. Phys. 138, 478 (1954).
http://dx.doi.org/10.1007/BF01340694
155.
155.D. G. Thomas and J. J. Lander, J. Chem. Phys. 25, 1136 (1956).
http://dx.doi.org/10.1063/1.1743165
156.
156.K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, B. Luo, F. Ren, D. C. Look, and J. M. Zavada, Appl. Phys. Lett. 82, 385 (2003).
http://dx.doi.org/10.1063/1.1539927
157.
157.J. Bang and K. J. Chang, Appl. Phys. Lett. 92, 132109 (2008).
http://dx.doi.org/10.1063/1.2906379
158.
158.M. G. Wardle, J. P. Goss, and P. R. Briddon, Phys. Rev. Lett. 96, 205504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.205504
159.
159.N. H. Nickel, Phys. Rev. B 73, 195204 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195204
160.
160.K. M. Johansen, J. S. Christensen, E. V. Monakhov, A. Y. Kuznetsov, and B. G. Svensson, Appl. Phys. Lett. 93, 152109 (2008).
http://dx.doi.org/10.1063/1.3001605
161.
161.C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1012
162.
162.C. G. Van de Walle and J. Neugebauer, Nature (London) 423, 626 (2003).
http://dx.doi.org/10.1038/nature01665
163.
163.C. Kilic and A. Zunger, Appl. Phys. Lett. 81, 73 (2002).
http://dx.doi.org/10.1063/1.1482783
164.
164.S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord, J. M. Gil, H. V. Alberto, R. C. Vilao, J. P. Duarte, N. A. de Campos, A. Weidinger, R. L. Lichti, and S. J. C. Irvine, Phys. Rev. Lett. 86, 2601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2601
165.
165.J. M. Gil, H. V. Alberto, R. C. Vilao, J. P. Duarte, N. A. de Campos, A. Weidinger, J. Krauser, E. A. Davis, and S. F. J. Cox, Phys. Rev. B 64, 075205 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.075205
166.
166.M. D. McCluskey, S. J. Jokela, K. K. Zhuravlev, P. J. Simpson, and K. G. Lynn, Appl. Phys. Lett. 81, 3807 (2002).
http://dx.doi.org/10.1063/1.1520703
167.
167.S. J. Jokela, M. D. McCluskey, and K. G. Lynn, Physica B 340–342, 221 (2003).
http://dx.doi.org/10.1016/j.physb.2003.09.023
168.
168.E. V. Lavrov, J. Weber, F. Börrnert, C. G. Van de Walle, and R. Helbig, Phys. Rev. B 66, 165205 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165205
169.
169.B. Theys, V. Sallet, F. Jomard, A. Lusson, J. F. Rommeluere, and Z. Teukam, J. Appl. Phys. 91, 3922 (2002).
http://dx.doi.org/10.1063/1.1452778
170.
170.Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, and K. Morita, J. Eur. Ceram. Soc. 24, 139 (2004).
http://dx.doi.org/10.1016/S0955-2219(03)00336-4
171.
171.Y. J. Li, T. C. Kaspar, T. C. Droubay, A. G. Joly, P. Nachimuthu, Z. Zhu, V. Shutthanandan, and S. A. Chambers, J. Appl. Phys. 104, 053711 (2008).
http://dx.doi.org/10.1063/1.2975219
172.
172.Y. J. Li, T. C. Kaspar, T. C. Droubay, Z. Zhu, V. Shutthanandan, P. Nachimuthu, and S. A. Chambers, Appl. Phys. Lett. 92, 152105 (2008).
http://dx.doi.org/10.1063/1.2911723
173.
173.S. Limpijumnong and S. B. Zhang, Appl. Phys. Lett. 86, 151910 (2005).
http://dx.doi.org/10.1063/1.1900935
174.
174.M. G. Wardle, J. P. Goss, and P. R. Briddon, Appl. Phys. Lett. 88, 261906 (2006).
http://dx.doi.org/10.1063/1.2218303
175.
175.S. J. Jokela and M. D. McCluskey, Phys. Rev. B 72, 113201 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.113201
176.
176.K. Shimomura, K. Nishiyama, and R. Kadono, Phys. Rev. Lett. 89, 255505 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.255505
177.
177.C. H. Seager and S. M. Myers, J. Appl. Phys. 94, 2888 (2003).
http://dx.doi.org/10.1063/1.1595147
178.
178.G. A. Shi, M. Stavola, S. J. Pearton, M. Thieme, E. V. Lavrov, and J. Weber, Phys. Rev. B 72, 195211 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.195211
179.
179.X. B. Li, S. Limpijumnong, W. Q. Tian, H. B. Sun, and S. B. Zhang, Phys. Rev. B 78, 113203 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.113203
180.
180.G. A. Shi, M. Saboktakin, M. Stavola, and S. J. Pearton, Appl. Phys. Lett. 85, 5601 (2004).
http://dx.doi.org/10.1063/1.1832736
181.
181.E. V. Lavrov, F. Herklotz, and J. Weber, Phys. Rev. Lett. 102, 185502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.185502
182.
182.S. Zh. Karazhanov and A. G. Ulyashin, Phys. Rev. B 78, 085213 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085213
183.
183.Y. M. Strzhemechny, H. L. Mosbacker, D. C. Look, D. C. Reynolds, G. W. Litton, N. Y. Garces, N. C. Giles, L. E. Halliburton, S. Niki, and L. J. Brillson, Appl. Phys. Lett. 84, 2545 (2004).
http://dx.doi.org/10.1063/1.1695440
184.
184.Y. M. Strzhemechny, J. Nemergut, P. E. Smith, J. Bae, D. C. Look, and L. J. Brillson, J. Appl. Phys. 94, 4256 (2003).
http://dx.doi.org/10.1063/1.1606859
185.
185.N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
http://dx.doi.org/10.1063/1.1470703
186.
186.N. Ohashi, J. Appl. Phys. 93, 6386 (2003).
http://dx.doi.org/10.1063/1.1569034
187.
187.K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, S. O. Kucheyev, C. Jagadish, J. S. Williams, R. G. Wilson, and J. M. Zavada, Appl. Phys. Lett. 81, 3996 (2002).
http://dx.doi.org/10.1063/1.1524033
188.
188.G. J. Exarhos and S. K. Sharma, Thin Solid Films 270, 27 (1995).
http://dx.doi.org/10.1016/0040-6090(95)06855-4
189.
189.C. F. Windisch, G. J. Exarhos, C. Yao, and L. Q. Wang, J. Appl. Phys. 101, 123711 (2007).
http://dx.doi.org/10.1063/1.2748719
190.
190.E. V. Lavrov, F. Börrnert, and J. Weber, Physica B 401–402, 366 (2007).
http://dx.doi.org/10.1016/j.physb.2007.08.189
191.
191.S. J. Jokela and M. D. McCluskey, Phys. Rev. B 76, 193201 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.193201
192.
192.O. S. Kumar, E. Watanabe, R. Nakai, N. Nishimoto, and Y. Fujita, J. Cryst. Growth 298, 491 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.066
193.
193.X. Li, B. Keyes, S. Asher, S. B. Zhang, S. -H. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, Appl. Phys. Lett. 86, 122107 (2005).
http://dx.doi.org/10.1063/1.1886256
194.
194.J. Hu, H. Y. He, and B. C. Pan, J. Appl. Phys. 103, 113706 (2008).
http://dx.doi.org/10.1063/1.2939257
195.
195.U. Haboeck, A. Hoffmann, C. Thomsen, A. Zeuner, and B. K. Meyer, Phys. Status Solidi B 242, R21 (2005).
http://dx.doi.org/10.1002/pssb.200409089
196.
196.F. G. Gärtner and E. Mollwo, Phys. Status Solidi B 89, 381 (1978).
http://dx.doi.org/10.1002/pssb.2220890207
197.
197.F. Börrnert, E. V. Lavrov, and J. Weber, Phys. Rev. B 75, 205202 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205202
198.
198.J. Hu and B. C. Pan, J. Phys. Chem. C 112, 19142 (2008).
199.
199.E. V. Lavrov, J. Weber, and F. Börrnert, Phys. Rev. B 77, 155209 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.155209
200.
200.L. E. Halliburton, L. J. Wang, L. H. Bai, N. Y. Garces, N. C. Giles, M. J. Callahan, and B. G. Wang, J. Appl. Phys. 96, 7168 (2004).
http://dx.doi.org/10.1063/1.1806531
201.
201.E. V. Lavrov, F. Börrnert, and J. Weber, Phys. Rev. B 71, 035205 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035205
202.
202.G. Alvin Shi, M. Stavola, and W. Beall Fowler, Phys. Rev. B 73, 081201(R) (2006).
http://dx.doi.org/10.1103/PhysRevB.73.081201
203.
203.K. R. Martin, P. Blaney, G. Shi, M. Stavola, and W. Beall Fowler, Phys. Rev. B 73, 235209 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235209
204.
204.D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, J. Am. Chem. Soc. 125, 13205 (2003).
http://dx.doi.org/10.1021/ja036811v
205.
205.P. Koidl, Phys. Rev. B 15, 2493 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.2493
206.
206.H. J. Schulz and M. Thiede, Phys. Rev. B 35, 18 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.18
207.
207.U. Kaufmann, P. Koidl, and O. F. Schirmer, J. Phys. C 6, 310 (1973).
http://dx.doi.org/10.1088/0022-3719/6/2/012
208.
208.Y. J. Li, B. Zhang, and W. Lu, J. Appl. Phys. 105, 093516 (2009).
http://dx.doi.org/10.1063/1.3116721
209.
209.R. Heitz, A. Hoffmann, B. Hausmann, and I. Broser, J. Lumin. 48–49, 689 (1991).
http://dx.doi.org/10.1016/0022-2313(91)90220-P
210.
210.W. M. Walsh and L. W. Rupp, Phys. Rev. 126, 952 (1962).
http://dx.doi.org/10.1103/PhysRev.126.952
211.
211.R. Heitz, A. Hoffmann, and I. Broser, Phys. Rev. B 45, 8977 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.8977
212.
212.U. Philipose, S. V. Nair, S. Trudel, C. F. de Souza, S. Aouba, R. H. Hill, and H. E. Ruda, Appl. Phys. Lett. 88, 263101 (2006).
http://dx.doi.org/10.1063/1.2217707
213.
213.W. M. Hlaing Oo, L. V. Saraf, M. H. Engelhard, V. Shutthanandan, L. Bergman, J. Huso, and M. D. McCluskey, J. Appl. Phys. 105, 013715 (2009).
http://dx.doi.org/10.1063/1.3063730
214.
214.T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma, and M. Kawasaki, Appl. Surf. Sci. 223, 62 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00898-5
215.
215.C. Liu, F. Yun, and H. Morkoç, J. Mater. Sci.: Mater. Electron. 16, 555 (2005).
http://dx.doi.org/10.1007/s10854-005-3232-1
216.
216.F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, Mater. Sci. Eng., R. 62, 1 (2008).
http://dx.doi.org/10.1016/j.mser.2008.04.002
217.
217.S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).
http://dx.doi.org/10.1088/0268-1242/19/10/R01
218.
218.S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, J. Appl. Phys. 93, 1 (2003).
http://dx.doi.org/10.1063/1.1517164
219.
219.R. Prellier, A. Fouchet, and B. Mercey, J. Phys.: Condens. Matter 15, R1583 (2003).
http://dx.doi.org/10.1088/0953-8984/15/37/R01
220.
220.K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).
http://dx.doi.org/10.1063/1.1384478
221.
221.G. Lawes, A. S. Risbud, A. P. Ramirez, and R. Seshadri, Phys. Rev. B 71, 045201 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.045201
222.
222.C. N. R. Rao and F. L. Deepak, J. Mater. Chem. 15, 573 (2005).
http://dx.doi.org/10.1039/b412993h
223.
223.S. Yin, M. X. Xu, L. Yang, J. F. Liu, H. Rosner, H. Hahn, H. Gleiter, D. Schild, S. Doyle, T. Liu, T. D. Hu, E. Takayama-Muromachi, and J. Z. Jiang, Phys. Rev. B 73, 224408 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.224408
224.
224.T. C. Kaspar, T. Droubay, S. M. Heald, P. Nachimuthu, C. M. Wang, V. Shutthanandan, C. A. Johnson, D. R. Gamelin, and S. A. Chambers, New J. Phys. 10, 055010 (2008).
http://dx.doi.org/10.1088/1367-2630/10/5/055010
225.
225.J. H. Park, M. G. Kim, H. M. Jang, S. Ryu, and Y. M. Kim, Appl. Phys. Lett. 84, 1338 (2004).
http://dx.doi.org/10.1063/1.1650915
226.
226.S. A. Chambers and R. F. Farrow, MRS Bull. 28, 729 (2003).
227.
227.T. C. Kaspar, T. Droubay, S. M. Heald, M. H. Engelhard, P. Nachimuthu, and S. A. Chambers, Phys. Rev. B 77, 201303(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.77.201303
228.
228.B. B. Straumal, A. A. Mazilkin, S. G. Protasova, A. A. Myatiev, P. B. Straumal, G. Schütz, P. A. van Aken, E. Goering, and B. Baretzky, Phys. Rev. B 79, 205206 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205206
229.
229.O. Schmidt, P. Kiesel, C. G. Van de Walle, N. M. Johnson, J. Nause, and G. H. Döhler, Jpn. J. Appl. Phys., Part 1 44, 7271 (2005).
http://dx.doi.org/10.1143/JJAP.44.7271
230.
230.D. C. Look, H. L. Mosbacker, Y. M. Strzhemechny, and L. J. Brillson, Superlattices Microstruct. 38, 406 (2005).
http://dx.doi.org/10.1016/j.spmi.2005.08.013
231.
231.H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, Appl. Phys. Lett. 82, 1736 (2003).
http://dx.doi.org/10.1063/1.1562340
232.
232.I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.036804
233.
233.D. C. Look, B. Caflin, and H. E. Smith, Appl. Phys. Lett. 92, 122108 (2008).
http://dx.doi.org/10.1063/1.2903505
234.
234.A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga, and H. J. Ko, J. Appl. Phys. 96, 3763 (2004).
http://dx.doi.org/10.1063/1.1785852
235.
235.E. Müller, D. Gerthsen, P. Bruckner, F. Scholz, T. Gruber, and A. Waag, Phys. Rev. B 73, 245316 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245316
236.
236.T. Taishi, J. Appl. Phys. 103, 093502 (2008).
http://dx.doi.org/10.1063/1.2908193
237.
237.Y. Ohno, H. Koizumi, T. Taishi, I. Yonenaga, K. Fujii, H. Goto, and T. Yao, Appl. Phys. Lett. 92, 011922 (2008).
http://dx.doi.org/10.1063/1.2831001
238.
238.C. M. Wang, L. V. Saraf, and Y. Qiang, Thin Solid Films 516, 8337 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.04.001
239.
239.P. Vennegues, J. M. Chauveau, M. Korytov, C. Deparis, J. Zuniga-Perez, and C. Morhain, J. Appl. Phys. 103, 083525 (2008).
http://dx.doi.org/10.1063/1.2905220
240.
240.Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S. H. Wei, Phys. Rev. B 70, 193206 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.193206
241.
241.P. Ruterana, M. Abouzaid, A. Bere, and J. Chen, J. Appl. Phys. 103, 033501 (2008).
http://dx.doi.org/10.1063/1.2837027
242.
242.Y. Sato, T. Mizoguchi, F. Oba, Y. Ikuhara, and T. Yamamoto, Phys. Rev. B 72, 064109 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.064109
243.
243.F. Oba, H. Ohta, Y. Sato, H. Hosono, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B 70, 125415 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.125415
244.
244.G. D. Mahan, J. Appl. Phys. 54, 3825 (1983).
http://dx.doi.org/10.1063/1.332607
245.
245.L. M. Levinson and H. R. Philipp, Ceram. Bull. 65, 639 (1986).
246.
246.G. D. Mahan, J. Appl. Phys. 50, 2799 (1979).
http://dx.doi.org/10.1063/1.326191
247.
247.J. M. Carlsson, H. S. Domingos, P. D. Bristowe, and B. Hellsing, Phys. Rev. Lett. 91, 165506 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.165506
http://aip.metastore.ingenta.com/content/aip/journal/jap/106/7/10.1063/1.3216464
Loading
/content/aip/journal/jap/106/7/10.1063/1.3216464
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/106/7/10.1063/1.3216464
2009-10-05
2016-07-29

Abstract

Zinc oxide (ZnO) is a wide band gap semiconductor with potential applications in optoelectronics, transparent electronics, and spintronics. The high efficiency of UV emission in this material could be harnessed in solid-state white lighting devices. The problem of defects, in particular, acceptor dopants, remains a key challenge. In this review, defects in ZnO are discussed, with an emphasis on the physical properties of point defects in bulk crystals. As grown, ZnO is usually -type, a property that was historically ascribed to native defects. However, experiments and theory have shown that O vacancies are deep donors, while Zninterstitials are too mobile to be stable at room temperature. Group-III (B, Al, Ga, and In) and H impurities account for most of the -type conductivity in ZnO samples. Interstitial H donors have been observed with IR spectroscopy, while substitutional H donors have been predicted from first-principles calculations but not observed directly. Despite numerous reports, reliable -type conductivity has not been achieved. Ferromagnetism is complicated by the presence of secondary phases, grain boundaries, and native defects. The famous green luminescence has several possible origins, including Cu impurities and Znvacancies. The properties of group-I (Cu, Li, and Na) and group-V (N, P, As, and Sb) acceptors, and their complexes with H, are discussed. In the future, doping of ZnO nanocrystals will rely on an understanding of these fundamental properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/106/7/1.3216464.html;jsessionid=VF0QRL8e67ZFCWQFl7bvfVbr.x-aip-live-03?itemId=/content/aip/journal/jap/106/7/10.1063/1.3216464&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/106/7/10.1063/1.3216464&pageURL=http://scitation.aip.org/content/aip/journal/jap/106/7/10.1063/1.3216464'
Right1,Right2,Right3,