Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.The International Technology Roadmap for Semiconductors 2007 Edition, Front End Processes, 2007, available from
2.The International Technology Roadmap for Semiconductors 2008 Update, Front End Processes, 2008, available from
3.See, for example, Proceedings of the 43rd Design Automation Conference, 2006 (unpublished).
4.A. Bhavnagarwala, S. Kosonocky, C. Radens, K. Stawiasz, R. Mann, Q. Ye, and K. Chin, Tech. Dig.-Int. Electron Devices Meet. 2005, 659.
5.K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copeland, IEEE J. Solid-State Circuits 21, 1057 (1986).
6.M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, IEEE J. Solid-State Circuits 24, 1433 (1989).
7.P. A. Stolk, H. P. Tuinhout, R. Duffy, E. Augendre, L. P. Bellefroid, M. J. B. Bolt, J. Croon, C. J. J. Dachs, F. R. J. Huisman, A. J. Moonen, Y. V. Ponomarev, R. F. M. Roes, M. D. Rold, E. Seevinck, K. N. Sreerambhatla, R. Surdeanu, R. M. D. A. Velghe, M. Vertregt, M. N. Webster, N. K. J. van Winkelhoff, and A. T. A. Z.-V. Duijnhoven, Tech. Dig.-Int. Electron Devices Meet. 2001, 215.
8.J. A. Croon, M. Rosmeulen, S. Decoutere, W. Sansen, and H. E. Maes, IEEE J. Solid-State Circuits 37, 1056 (2002).
9.G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy, and A. Asenov, IEEE Trans. Electron Devices 53, 3063 (2006).
10.T. Mizuno, J. Okamura, and A. Toriumi, IEEE Trans. Electron Devices 41, 2216 (1994).
11.K. Takeuchi, T. Tatusmi, and A. Furukawa, Tech. Dig.-Int. Electron Devices Meet. 1997, 841.
12.P. A. Stolk, F. P. Widdershoven, and D. B. M. Klaassen, IEEE Trans. Electron Devices 45, 1960 (1998).
13.A. Asenov, IEEE Trans. Electron Devices 45, 2505 (1998).
14.M. Hane, T. Ikezawa, and T. Ezaki, Tech. Dig.-Int. Electron Devices Meet. 2003, 241.
15.K. Takeuchi, T. Fukai, T. Tsunomura, A. T. Putra, A. Nishida, S. Kamohara, and T. Hiramoto, Tech. Dig.-Int. Electron Devices Meet. 2007, 467.
16.C. H. Diaz, H. -J. Tao, Y. -C. Ku, A. Yen, and K. Young, IEEE Electron Device Lett. 22, 287 (2001).
17.T. Linton, M. Chandhok, B. J. Rice, and G. Schrom, Tech. Dig.-Int. Electron Devices Meet. 2002, 303.
18.J. A. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, and H. E. Maes, Tech. Dig.-Int. Electron Devices Meet. 2002, 307.
19.G. F. Lorusso, L. H. A. Leunissen, C. Gustin, A. Mercha, M. Jurczak, H. M. Marchman, and A. Azordegan, Proc. SPIE 6152, 61520W (2006).
20.A. Yamaguchi, R. Tsuchiya, H. Fukuda, O. Komuro, H. Kawada, and T. Iizumi, Proc. SPIE 5038, 689 (2003).
21.L. H. A. Leunissen, G. F. Lorusso, M. Ercken, J. A. Croon, H. Yang, A. Azordegan, and T. DiBiase, Proc. SPIE 5752, 499 (2005).
22.E. Baravelli, A. Dixit, R. Rooyackers, M. Jurczak, N. Speciale, and K. De Mayer, IEEE Trans. Electron Devices 54, 2466 (2007).
23.E. W. Conrad and D. P. Paul, U.S. Patent No. 5,963,329 (5 October 1999).
24.M. Sendelbach, W. Natzle, C. Archie, and B. Banke, Proc. SPIE 5375, 686 (2004).
25.A. Yamaguchi and O. Komuro, Jpn. J. Appl. Phys., Part 1 42, 3763 (2003).
26.V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, Proc. SPIE 5375, 967 (2004).
27.S. O. Rice, Bell Syst. Tech. J. 23, 282 (1944).
28.SEMI Standards, Report No. P47-0307, 2007.
29.A. Yamaguchi, R. Steffen, H. Kawada, and T. Iizumi, Proc. SPIE 6152, 61522D (2006).
30.J. S. Villarrubia and B. Bunday, Proc. SPIE 5752, 480 (2005).
31.J. R. Carlson, Bell Syst. Tech. J. 10, 374 (1931).
32.N. Wiener, Acta Math. 55, 117 (1930).
33.A. Y. Khintchine, Math. Ann. 109, 604 (1934).
34.A. Asenov, S. Kaya, and A. R. Brown, IEEE Trans. Electron Devices 50, 1254 (2003).
35.A. Yamaguchi and J. Yamamoto, Proc. SPIE 6922, 692221 (2008).

Data & Media loading...


Article metrics loading...



The variation of device characteristics is a challenge to present and future large-scale integrations. One of the origins of the variation is line width roughness (LWR). To facilitate the efforts to cope with LWR, we developed a method to accurately characterize LWR basing on the analysis of power spectral densities (PSDs). Because experimental PSDs are intrinsically discrete, we derive simple analytic formulas of the discrete PSDs by assuming that the autocorrelation function (ACF) exponentially decays with distance. The PSDs calculated by using the formulas agree excellently with experimentally obtained PSDs of photoresist LWR. From the result we find that the photoresist LWR of this study has a standard deviation of 2.5 nm and an exponentially-decaying autocorrelation function with a correlation length of 35 nm. Although the experimental PSDs inevitably contain a component produced by scanning-electron-microscope (SEM)-image noise, the two components of LWR and noise are separately determined by the method of this study. Due to this feature, the resultant variance of LWR is independent of the noise intensity. However, it is still important to reduce the noise component in order to maintain the accuracy of analysis especially in the case of LWR that has an unknown functional form of PSD. This is because even the PSDs that have different functional forms sometimes look alike in the presence of large noise. To reduce the noise effect, it is effective to average the SEM images perpendicularly to fine lines before edge detections. The procedure does not reduce the variance unlike averaging along the lines. The method of this study is applicable not only to LWR but also to other cases as far as the ACF exponentially decays with distance, or equivalently the spectral line shape is Lorentzian. Accordingly, it forms the basis for spectral analysis of most experimental results.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd