1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhanced ultraviolet electroluminescence from ZnO nanowires in coaxial nanowires/poly(3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) heterojunction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/107/3/10.1063/1.3304896
1.
1.H. Zhou, J. Fallert, J. Sartor, R. J. B. Dietz, C. Klingshirn, H. Kalt, D. Weissenberger, D. Gerthsen, H. Zeng, and W. Cai, Appl. Phys. Lett. 92, 132112 (2008).
http://dx.doi.org/10.1063/1.2907197
2.
2.H. E. Unalan, Y. Zhang, P. Hiralal, S. Dalal, D. Chu, G. Eda, K. B. K. Teo, M. Chhowalla, W. I. Milne, and G. A. J. Amaratunga, Appl. Phys. Lett. 94, 163501 (2009).
http://dx.doi.org/10.1063/1.3120561
3.
3.Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, Appl. Phys. Lett. 92, 113505 (2008).
http://dx.doi.org/10.1063/1.2898505
4.
4.J. P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, Appl. Phys. Lett. 92, 011103 (2008).
http://dx.doi.org/10.1063/1.2829598
5.
5.V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, Phys. Rev. B 73, 165317 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.165317
6.
6.J. V. Foreman, J. Li, H. Peng, S. Choi, H. O. Everitt, and J. Liu, Nano Lett. 6, 1126 (2006).
http://dx.doi.org/10.1021/nl060204z
7.
7.Y. L. Wu, A. I. Y. Tok, F. Y. C. Boey, X. T. Zeng, and X. H. Zhang, Appl. Surf. Sci. 253, 5473 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.12.091
8.
8.A. Bera and D. Basak, ACS Appl. Mat. & Interfaces 1(9), 2066 (2009).
http://dx.doi.org/10.1021/am900422y
9.
9.C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, Appl. Phys. Lett. 86, 183103 (2005).
http://dx.doi.org/10.1063/1.1904715
10.
10.J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, Opt. Lett. 31, 3173 (2006).
http://dx.doi.org/10.1364/OL.31.003173
11.
11.K. Remashan, D. K. Hwang, S. J. Park, and J. H. Jang, Jpn. J. Appl. Phys. 47, 2848 (2008).
http://dx.doi.org/10.1143/JJAP.47.2848
12.
12.J. Li, D. Zhao, X. Meng, Z. Zhang, J. Zhang, D. Shen, Y. Lu, and X. Fan, J. Phys. Chem. B 110, 14685 (2006).
http://dx.doi.org/10.1021/jp061563l
13.
13.L. Shi, Y. Xu, S. Hark, Y. Liu, S. Wang, L. M. Peng, K. Wong, and Q. Li, Nano Lett. 7, 3559 (2007).
http://dx.doi.org/10.1021/nl0707959
14.
14.F. Fang, D. X. Zhao, B. H. Li, Z. Z. Zhang, J. Y. Zhang, and D. Z. Shen, Appl. Phys. Lett. 93, 233115 (2008).
http://dx.doi.org/10.1063/1.3045952
15.
15.J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, Nanotechnology 19, 305202 (2008).
http://dx.doi.org/10.1088/0957-4484/19/30/305202
16.
16.M. Ohyama, H. Kouzuka, and T. Yoko, Thin Solid Films 306, 78 (1997).
http://dx.doi.org/10.1016/S0040-6090(97)00231-9
17.
17.M. Ghosh, R. Bhattacharyya, and A. K. Raychaudhuri, Bull. Mater. Sci. 31, 283 (2008).
http://dx.doi.org/10.1007/s12034-008-0046-9
18.
18.S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009).
http://dx.doi.org/10.1088/1468-6996/10/1/013001
19.
19.A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meilerink, J. Lumin. 87–89, 454 (2000).
http://dx.doi.org/10.1016/S0022-2313(99)00482-2
20.
20.N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
http://dx.doi.org/10.1063/1.1787905
21.
21.K. Vanheusden, W. L. Warren, C. H. Seage, D. R. Tallent, J. A. Voigtang, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
http://dx.doi.org/10.1063/1.362349
22.
22.T. H. Lin, T. T. Chen, C. L. Cheng, H. Y. Lin, and Y. F. Chen, Opt. Express 17, 4342 (2009).
http://dx.doi.org/10.1364/OE.17.004342
23.
23.C. Berney and G. Danuser, Biophys. J. 84, 3992 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)75126-1
24.
24.J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, Nanotechnology 17, 4391 (2006).
http://dx.doi.org/10.1088/0957-4484/17/17/017
25.
25.T. Chen, G. Z. Xing, Z. Zhang, H. Y. Chen, and T. Wu, Nanotechnology 19, 435711 (2008).
http://dx.doi.org/10.1088/0957-4484/19/43/435711
26.
26.S. Z. Li, C. L. Gan, H. Cai, C. L. Yuan, J. Guo, P. S. Lee, and J. Ma, Appl. Phys. Lett. 90, 263106 (2007).
http://dx.doi.org/10.1063/1.2752020
27.
27.S. J. An and G. C. Yi, Appl. Phys. Lett. 91, 123109 (2007).
http://dx.doi.org/10.1063/1.2786852
28.
28.M. Grätzel, Nature (London) 414, 338 (2001).
http://dx.doi.org/10.1038/35104607
29.
29.K. Y. Song, Y. T. Kwon, G. J. Choi, and W. I. Lee, Bull. Korean Chem. Soc. 20, 957 (1999).
30.
30.H. Y. Lin, Y. Y. Chou, C. L. Cheng, and Y. F. Chen, Opt. Express 15, 13832 (2007).
http://dx.doi.org/10.1364/OE.15.013832
http://aip.metastore.ingenta.com/content/aip/journal/jap/107/3/10.1063/1.3304896
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic illustration of the coaxial NWs/PEDOT:PSS heterostructure LED. (b) FESEM image of top view of ZnO NWs grown on ITO substrate. (c) Cross-sectional FESEM image of the coaxial NWs/PEDOT:PSS heterojunction structure. (d) XRD pattern of the ZnO NWs on ITO substrate prepared by hydrothermal method at for 3 h.

Image of FIG. 2.

Click to view

FIG. 2.

Characterization results of the coaxial NW. (a) TEM image. (b) The high magnification TEM image. (c) HRTEM image along with the corresponding selected area electron diffraction pattern. (d) EDS spectrum. The coverage of coating was deposited at a current of 40 mA for 150 s.

Image of FIG. 3.

Click to view

FIG. 3.

PL spectra of the uncoated ZnO NWs and the coaxial NWs with different deposition times of 50, 100, 150, 250, and 350 s at a deposition current of 40 mA. The inset shows the enlarged PL spectrum of the uncoated ZnO NWs.

Image of FIG. 4.

Click to view

FIG. 4.

(a) The room temperature characteristics of the ZnO NWs/PEDOT:PSS devices and the coaxial NWs/PEDOT:PSS devices with different deposition times of 50, 150, 250, and 350 s. (b) EL spectra of the ZnO NWs/PEDOT:PSS device and the coaxial NWs/PEDOT:PSS devices with different deposition times of 30 and 50 s. (c) EL spectra of the coaxial NWs/PEDOT:PSS devices with different deposition times of 50, 150, 250, and 350 s. (d) The variation in EL intensity ratio of the band gap and defect emission with different deposition times. The coverage of coating was deposited at a current of 40 mA. The inset of Fig. 4(a) shows the surface curves of the Au and the ITO contacts on the PEDOT:PSS and coaxial NWs films, respectively.

Image of FIG. 5.

Click to view

FIG. 5.

Energy band alignment of coaxial NW.

Image of FIG. 6.

Click to view

FIG. 6.

(a) EL spectra of the coaxial NWs/PEDOT:PSS devices with 8 nm coating at different deposition currents of 40 mA for 350 s and 10 mA for 850 s. The TEM images of the coaxial NWs with 8 nm coating at different deposition currents of (a) 40 mA for 350 s and (b) 10 mA for 850 s.

Loading

Article metrics loading...

/content/aip/journal/jap/107/3/10.1063/1.3304896
2010-02-08
2014-04-23

Abstract

The ultraviolet (UV)electroluminescence(EL) from the coaxial nanowires (NWs)/poly(3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) inorganic/organic heterostructure devices is greatly enhanced and the defect emission is significantly suppressed compared with the uncoated ZnO NW device at room temperature. The origins of the great changes in EL of ZnO NW devices are attributed to the surface modification of the sputtered coating and the reduction in the pinhole traps on the surface of ZnO NWs. It is found that for the optimized device, the EL intensity ratio between the band gap and defect emission can be greatly enhanced by up to about 250 times its prior level. Such ZnO NW devices with enhanced UV emission have potential applications in the highly efficient solid state emitters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/107/3/1.3304896.html;jsessionid=1xpyibnnxowef.x-aip-live-01?itemId=/content/aip/journal/jap/107/3/10.1063/1.3304896&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly(3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) heterojunction
http://aip.metastore.ingenta.com/content/aip/journal/jap/107/3/10.1063/1.3304896
10.1063/1.3304896
SEARCH_EXPAND_ITEM