Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/107/7/10.1063/1.3318261
1.
1.J. A. Brinkman, J. Appl. Phys. 25, 961 (1954).
http://dx.doi.org/10.1063/1.1721810
2.
2.F. Seitz and J. S. Koehler, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1956), Vol. 2, p. 307.
3.
3.A. Seeger, The Nature of Radiation Damage in Metals (International Atomic Energy Agency, Vienna, 1962), Vol. 1, pp. 101127.
4.
4.J. W. Mayer and S. S. Lau, Electronic Materials Science For Integrated Circuits in Si and GaAs (MacMillan, New York, 1990).
5.
5.E. Chason, S. T. Picraux, M. Poate, J. O. Borland, M. I. Current, T. Diaz de la Rubia, D. J. Eaglesham, O. W. Holland, M. E. Law, C. W. Magee, J. W. Mayer, J. Melngailis, and A. F. Tasch, J. Appl. Phys. 81, 6513 (1997).
http://dx.doi.org/10.1063/1.365193
6.
6.F. Banhart and P. M. Ajayan, Nature (London) 382, 433 (1996).
http://dx.doi.org/10.1038/382433a0
7.
7.A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Nature (London) 430, 870 (2004).
http://dx.doi.org/10.1038/nature02817
8.
8.B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, and H. D. Espinosa, Nat. Nanotechnol. 3, 626 (2008).
http://dx.doi.org/10.1038/nnano.2008.211
9.
9.B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature (London) 396, 323 (1998).
http://dx.doi.org/10.1038/24521
10.
10.A. Kis, G. Csányi, J. -P. Salvetat, T. -N. Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger, and L. Fórro, Nature Mater. 3, 153 (2004).
http://dx.doi.org/10.1038/nmat1076
11.
11.C. Gómez-Navarro, P. J. De Pablo, J. Gómez-Herrero, B. Biel, F. J. Garcia-Vidal, A. Rubio, and F. Flores, Nature Mater. 4, 534 (2005).
http://dx.doi.org/10.1038/nmat1414
12.
12.M. Terrones, H. Terrones, F. Banhart, J. -C. Charlier, and P. M. Ajayan, Science 288, 1226 (2000).
http://dx.doi.org/10.1126/science.288.5469.1226
13.
13.C. O. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, and A. Zettl, Science 323, 1705 (2009).
http://dx.doi.org/10.1126/science.1166999
14.
14.D. Ugarte, Nature (London) 359, 707 (1992).
http://dx.doi.org/10.1038/359707a0
15.
15.A. V. Krasheninnikov and F. Banhart, Nature Mater. 6, 723 (2007).
http://dx.doi.org/10.1038/nmat1996
16.
16.J. H. Warner, M. H. Rümmeli, L. Ge, T. Gemming, B. Montanari, N. M. Harrison, B. Büchner, and G. Briggs, Nat. Nanotechnol. 4, 500 (2009).
http://dx.doi.org/10.1038/nnano.2009.194
17.
17.W. Mickelson, S. Aloni, W. Q. Han, J. Cumings, and A. Zettl, Science 300, 467 (2003).
http://dx.doi.org/10.1126/science.1082346
18.
18.M. Terrones, F. Banhart, N. Grobert, J. -C. Charlier, H. Terrones, and P. M. Ajayan, Phys. Rev. Lett. 89, 075505 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.075505
19.
19.L. Sun, F. Banhart, A. V. Krasheninnikov, J. A. Rodríguez-Manzo, M. Terrones, and P. M. Ajayan, Science 312, 1199 (2006).
http://dx.doi.org/10.1126/science.1124594
20.
20.L. Sun, A. V. Krasheninnikov, T. Ahlgren, K. Nordlund, and F. Banhart, Phys. Rev. Lett. 101, 156101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.156101
21.
21.H. Stahl, J. Appenzeller, R. Martel, P. Avouris, and B. Lengeler, Phys. Rev. Lett. 85, 5186 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5186
22.
22.B. Q. Wei, J. D’Arcy-Gall, P. M. Ajayan, and G. Ramanath, Appl. Phys. Lett. 83, 3581 (2003).
http://dx.doi.org/10.1063/1.1622781
23.
23.M. S. Raghuveer, P. G. Ganesan, J. D’Arcy-Gall, G. Ramanath, M. Marshall, and I. Petrov, Appl. Phys. Lett. 84, 4484 (2004).
http://dx.doi.org/10.1063/1.1756191
24.
24.M. S. Raghuveer, A. Kumar, M. J. Frederick, G. P. Louie, P. G. Ganesan, and G. Ramanath, Adv. Mater. 18, 547 (2006).
http://dx.doi.org/10.1002/adma.200500181
25.
25.M. Suzuki, K. Ishibashi, K. Toratani, D. Tsuya, and Y. Aoyagi, Appl. Phys. Lett. 81, 2273 (2002).
http://dx.doi.org/10.1063/1.1507608
26.
26.K. Ishibashi, D. Tsuya, M. Suzuki, and Y. Aoyagi, Appl. Phys. Lett. 82, 3307 (2003).
http://dx.doi.org/10.1063/1.1572537
27.
27.Y. J. Jung, Y. Homma, R. Vajtai, Y. Kobayashi, T. Ogino, and P. M. Ajayan, Nano Lett. 4, 1109 (2004).
http://dx.doi.org/10.1021/nl049550b
28.
28.D. -H. Kim, H. -S. Jang, C. -D. Kim, D. -S. Cho, H. -D. Kang, and H. -R. Lee, Chem. Phys. Lett. 378, 232 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)01249-1
29.
29.D. Q. Yang, J. Rochette, and E. Sacher, Langmuir 21, 8539 (2005).
http://dx.doi.org/10.1021/la0514922
30.
30.B. Ni, R. Andrews, D. Jacques, D. Qian, M. B. J. Wijesundara, Y. Choi, L. Hanley, and S. B. Sinnott, J. Phys. Chem. B 105, 12719 (2001).
http://dx.doi.org/10.1021/jp0123233
31.
31.C. Morant, J. Andrey, P. Prieto, D. Mendiola, J. M. Sanz, and E. Elizalde, Phys. Status Solidi A 203, 1069 (2006).
http://dx.doi.org/10.1002/pssa.200566110
32.
32.Z. Osváth, G. Vértesy, L. Tapasztó, F. Wéber, Z. E. Horváth, J. Gyulai, and L. P. Biró, Phys. Rev. B 72, 045429 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045429
33.
33.P. Vincent, A. Brioude, C. Journet, S. Rabaste, S. T. Purcell, J. L. Brusq, and J. C. Plenet, J. Non-Cryst. Solids 311, 130 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)01371-6
34.
34.H. M. Kim, H. S. Kim, S. K. Park, J. Joo, T. J. Lee, and C. J. Lee, J. Appl. Phys. 97, 026103 (2005).
http://dx.doi.org/10.1063/1.1834721
35.
35.H. Schittenhelm, D. B. Geohegan, G. E. Jellison, A. A. Puretzky, M. J. Lance, and P. F. Britt, Appl. Phys. Lett. 81, 2097 (2002).
http://dx.doi.org/10.1063/1.1506947
36.
36.V. A. Basiuk, K. Kobayashi, T. K. Y. Negishi, E. V. Basiuk, and J. M. Saniger-Blesa, Nano Lett. 2, 789 (2002).
http://dx.doi.org/10.1021/nl025601y
37.
37.B. Khare, M. Meyyappan, M. H. Moore, P. Wilhite, H. Imanaka, and B. Chen, Nano Lett. 3, 643 (2003).
http://dx.doi.org/10.1021/nl034058y
38.
38.P. P. Neupane, M. O. Manasreh, B. D. Weaver, B. J. Landi, and R. P. Raffaelle, Appl. Phys. Lett. 86, 221908 (2005).
http://dx.doi.org/10.1063/1.1940721
39.
39.K. Urita, K. Suenaga, T. Sugai, H. Shinohara, and S. Iijima, Phys. Rev. Lett. 94, 155502 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.155502
40.
40.C. -H. Kiang, W. A. Goddard, R. Beyers, and D. S. Bethune, J. Phys. Chem. 100, 3749 (1996).
http://dx.doi.org/10.1021/jp952636w
41.
41.P. M. Ajayan, V. Ravikumar, and J. -C. Charlier, Phys. Rev. Lett. 81, 1437 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1437
42.
42.B. W. Smith and D. E. Luzzi, J. Appl. Phys. 90, 3509 (2001).
http://dx.doi.org/10.1063/1.1383020
43.
43.V. H. Crespi, N. G. Chopra, M. L. Cohen, A. Zettl, and S. G. Louie, Phys. Rev. B 54, 5927 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.5927
44.
44.V. H. Crespi, N. G. Chopra, M. L. Cohen, A. Zettl, and V. Radmilovíc, Appl. Phys. Lett. 73, 2435 (1998).
http://dx.doi.org/10.1063/1.122473
45.
45.F. Banhart, J. X. Li, and M. Terrones, Small 1, 953 (2005).
http://dx.doi.org/10.1002/smll.200500162
46.
46.F. Banhart, J. X. Li, and A. V. Krasheninnikov, Phys. Rev. B 71, 241408(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.71.241408
47.
47.J. X. Li and F. Banhart, Nano Lett. 4, 1143 (2004).
http://dx.doi.org/10.1021/nl049705f
48.
48.C. Mikó, M. Milas, J. W. Seo, E. Couteau, N. Barisić, R. Gaál, and L. Forró, Appl. Phys. Lett. 83, 4622 (2003).
http://dx.doi.org/10.1063/1.1631060
49.
49.J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli, Appl. Phys. A: Mater. Sci. Process. 69, 255 (1999).
http://dx.doi.org/10.1007/s003390050999
50.
50.J. P. Salvetat, T. Fehér, C. L’Huillier, F. Beuneu, and L. Forró, Phys. Rev. B 72, 075440 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075440
51.
51.S. Trasobares, O. Stéphan, C. Colliex, G. Hug, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, Eur. Phys. J. B 22, 117 (2001).
52.
52.R. Caudillo, H. E. Troiani, M. A. L. M. M. Miki-Yoshida, A. Rubio, and M. J. Yacaman, Radiat. Phys. Chem. 73, 334 (2005).
http://dx.doi.org/10.1016/j.radphyschem.2004.10.003
53.
53.V. Skakalova, U. Dettlaff-Weglikowska, and S. Roth, Diamond Related Materials 13, 296 (2004).
http://dx.doi.org/10.1016/j.diamond.2003.11.003
54.
54.C. Mikó, M. Milas, J. W. Seo, R. Gaal, A. Kulik, and L. Forro, Appl. Phys. Lett. 88, 151905 (2006).
http://dx.doi.org/10.1063/1.2195013
55.
55.A. Mangione, L. Torrisi, A. M. Visco, N. Campo, F. Bonaccorso, P. G. Gucciardi, and F. Belloni, Radiat. Eff. Defects Solids 163, 453 (2008).
http://dx.doi.org/10.1080/10420150701780532
56.
56.M. Hulman, V. Skákalová, S. Roth, and H. Kuzmany, J. Appl. Phys. 98, 024311 (2005).
http://dx.doi.org/10.1063/1.1984080
57.
57.S. Talapatra, P. G. Ganesan, T. Kim, R. Vajtai, M. Huang, M. Shima, G. Ramanath, D. Srivastava, S. C. Deevi, and P. M. Ajayan, Phys. Rev. Lett. 95, 097201 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.097201
58.
58.P. Esquinazi, D. Spearmann, R. Höhne, A. Setzer, and T. Butz, Phys. Rev. Lett. 91, 227201 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.227201
59.
59.C. Chappert, H. Bernas, J. Ferreacute, V. Kottler, J. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, Science 280, 1919 (1998).
http://dx.doi.org/10.1126/science.280.5371.1919
60.
60.H. Bernas, J. -P. Attané, K. -H. Heinig, D. Halley, D. Ravelosona, A. Marty, P. Auric, C. Chappert, and Y. Samson, Phys. Rev. Lett. 91, 077203 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.077203
61.
61.E. Akcöltekin, T. Peters, R. Meyer, A. Duvenbeck, M. Klusmann, I. Monnet, H. Lebius, and M. Schleberger, Nat. Nanotechnol. 2, 290 (2007).
http://dx.doi.org/10.1038/nnano.2007.109
62.
62.S. Dhar, R. P. Davis, and L. C. Feldman, Nanotechnology 17, 4514 (2006).
http://dx.doi.org/10.1088/0957-4484/17/17/038
63.
63.K. H. Heinig, T. Muller, B. Schmidt, M. Strobel, and W. Möller, Appl. Phys. A: Mater. Sci. Process. 77, 17 (2003).
http://dx.doi.org/10.1007/s00339-002-2061-9
64.
64.S. Klaumünzer, Nucl. Instrum. Methods Phys. Res. B 244, 1 (2006).
http://dx.doi.org/10.1016/j.nimb.2005.11.006
65.
65.A. Colli, A. Fasoli, C. Ronning, S. Pisana, S. Piscanec, and A. C. Ferrari, Nano Lett. 8, 2188 (2008).
http://dx.doi.org/10.1021/nl080610d
66.
66.A. Kumar, D. K. Avasthi, J. C. Pivin, and P. M. Koinkar, Appl. Phys. Lett. 92, 221904 (2008).
http://dx.doi.org/10.1063/1.2938718
67.
67.W. L. Brown, M. F. Jarrold, R. L. McEachern, M. Sosnowski, H. U. G. Takaoka, and I. Yamada, Nucl. Instrum. Methods Phys. Res. B 59-60, 182 (1991).
http://dx.doi.org/10.1016/0168-583X(91)95202-O
68.
68.S. Bouneau, A. Brunelle, S. Della-Negra, J. Depauw, D. Jacquet, Y. L. Beyec, M. Pautrat, M. Fallavier, J. C. Poizat, and H. H. Andersen, Phys. Rev. B 65, 144106 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144106
69.
69.L. P. Allen, Z. Insepov, D. B. F. C. Santeufemio, W. Brooks, K. S. Jones, and I. Yamada, J. Appl. Phys. 92, 3671 (2002).
http://dx.doi.org/10.1063/1.1506422
70.
70.H. H. Andersen, A. Johansen, M. Olsen, and V. Touboltsev, Nucl. Instrum. Methods Phys. Res. B 212, 56 (2003).
http://dx.doi.org/10.1016/S0168-583X(03)01479-4
71.
71.J. Samela and K. Nordlund, Phys. Rev. Lett. 101, 027601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.027601
72.
72.F. Banhart, Rep. Prog. Phys. 62, 1181 (1999).
http://dx.doi.org/10.1088/0034-4885/62/8/201
73.
73.F. Banhart, Philos. Trans. R. Soc. London, Ser. A 362, 2205 (2004).
http://dx.doi.org/10.1098/rsta.2004.1436
74.
74.A. V. Krasheninnikov and K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 216, 355 (2004).
http://dx.doi.org/10.1016/j.nimb.2003.11.061
75.
75.S. Dhara, Crit. Rev. Solid State Mater. Sci. 32, 1 (2007).
http://dx.doi.org/10.1080/10408430601187624
76.
76.A. V. Krasheninnikov, J. Comput. Theor. Nanosci. 5, 1828 (2008).
http://dx.doi.org/10.1166/jctn.2008.902
77.
77.J. Kotakoski, A. V. Krasheninnikov, and K. Nordlund, Radiat. Eff. Defects Solids 162, 157 (2007).
http://dx.doi.org/10.1080/10420150601132537
78.
78.I. Utke, P. Hoffmann, and J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008).
http://dx.doi.org/10.1116/1.2955728
79.
79.A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
80.
80.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
81.
81.ISI Web of Science (formerly known as Science Citation Index), isiwebofknowledge.com. Web of Science is a registered trademark of Thomson Reuters Inc.
82.
82.J. P. Briand, L. de Billy, P. Charles, S. Essabaa, P. Briand, R. Geller, J. P. Desclaux, S. Bliman, and C. Ristori, Phys. Rev. Lett. 65, 159 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.159
83.
83.J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).
84.
84.M. Nastasi, J. Mayer, and J. Hirvonen, Ion-Solid Interactions—Fundamentals and Applications (Cambridge University Press, Cambridge, 1996).
85.
85.T. Diaz de la Rubia, R. S. Averback, R. Benedek, and W. E. King, Phys. Rev. Lett. 59, 1930 (1987);
http://dx.doi.org/10.1103/PhysRevLett.59.1930
85.T. Diaz de la Rubia, R. S. Averback, R. Benedek, and W. E. King, Phys. Rev. Lett.60, 76(E) (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.76.3
86.
86.S. E. Donnelly and R. C. Birtcher, Phys. Rev. B 56, 13599 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.13599
87.
87.A. Meldrum, S. J. Zinkle, L. A. Boatner, and R. C. Ewing, Nature (London) 395, 56 (1998).
http://dx.doi.org/10.1038/25698
88.
88.A. E. Stuchbery and E. Bezakova, Phys. Rev. Lett. 82, 3637 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3637
89.
89.E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).
http://dx.doi.org/10.1103/PhysRev.72.399
90.
90.L. M. Kishinevskii, Bull. Acad. Sci. USSR, Phys. Ser. (Engl. Transl.) 26, 1433 (1962).
91.
91.E. Bonderup and P. Hvelplund, Phys. Rev. A 4, 562 (1971).
http://dx.doi.org/10.1103/PhysRevA.4.562
92.
92.P. M. Echenique, R. M. Nieminen, and R. H. Ritchie, Solid State Commun. 37, 779 (1981).
http://dx.doi.org/10.1016/0038-1098(81)91173-X
93.
93.W. Brandt and M. Kitagawa, Phys. Rev. B 25, 5631 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.5631
94.
94.J. A. Golovchenko, D. E. Cox, and A. N. Goland, Phys. Rev. B 26, 2335 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.2335
95.
95.J. Oddershede and J. R. Sabin, At. Data Nucl. Data Tables 31, 275 (1984).
http://dx.doi.org/10.1016/0092-640X(84)90024-X
96.
96.E. J. McGuire, Phys. Rev. A 56, 488 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.488
97.
97.A. F. Lifschitz and N. R. Arista, Phys. Rev. A 57, 200 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.200
98.
98.J. F. Ziegler, J. Appl. Phys. 85, 1249 (1999).
http://dx.doi.org/10.1063/1.369844
99.
99.J. Wang, J. Mathar, S. B. Trickey, and J. R. Sabin, J. Phys.: Condens. Matter 11, 3973 (1999).
http://dx.doi.org/10.1088/0953-8984/11/20/304
100.
100.J. I. Juaristi, C. Auth, H. Winter, A. Arnau, K. Eder, D. Semrad, F. Aumayr, P. Bauer, and P. Echenique, Phys. Rev. Lett. 84, 2124 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2124
101.
101.V. U. Nazarov, J. M. Pitarke, C. S. Kim, and Y. Takada, Phys. Rev. B 71, 121106(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.71.121106
102.
102.N. Arista, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 52, 595 (2006).
103.
103.J. Krauser, J. Zollondz, A. Weidinger, and C. Trautmann, J. Appl. Phys. 94, 1959 (2003).
http://dx.doi.org/10.1063/1.1587263
104.
104.D. Kanjijal, Curr. Sci. 80, 1560 (2001).
105.
105.C. Trautmann, S. Klaumünzer, and H. Trinkaus, Phys. Rev. Lett. 85, 3648 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3648
106.
106.A. Kumar, D. K. Avasthi, A. Tripathi, D. Kabiraj, F. Singh, and J. C. Pivin, J. Appl. Phys. 101, 014308 (2007).
http://dx.doi.org/10.1063/1.2404794
107.
107.P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, Phys. Rev. Lett. 101, 175503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.175503
108.
108.F. Spaepen and D. Turnbull, Crystallization Processes (Academic, New York, 1982), Chap. 2, pp. 1542.
109.
109.I. Jencic, M. W. Bench, I. M. Robertson, and M. A. Kirk, J. Appl. Phys. 78, 974 (1995).
http://dx.doi.org/10.1063/1.360764
110.
110.M. W. Bench, I. M. Robertson, M. A. Kirk, and I. Jenčič, J. Appl. Phys. 87, 49 (2000).
http://dx.doi.org/10.1063/1.371825
111.
111.J. Frantz, J. Tarus, K. Nordlund, and J. Keinonen, Phys. Rev. B 64, 125313 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.125313
112.
112.E. Aprile, W. H.-M. Ku, and J. Park, IEEE Trans. Nucl. Sci. 35, 37 (1988).
http://dx.doi.org/10.1109/23.12669
113.
113.G. Szenes, Nucl. Instrum. Methods Phys. Res. B 122, 530 (1997).
http://dx.doi.org/10.1016/S0168-583X(96)00660-X
114.
114.M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, and C. Trautmann, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 52, 263 (2006).
115.
115.M. Guinan, J. Nucl. Mater. 53, 171 (1974).
http://dx.doi.org/10.1016/0022-3115(74)90239-6
116.
116.K. Nordlund, T. T. Järvi, K. Meinander, and J. Samela, Appl. Phys. A: Mater. Sci. Process. 91, 561 (2008).
http://dx.doi.org/10.1007/s00339-008-4514-2
117.
117.J. Samela, K. Nordlund, V. N. Popok, and E. E. B. Campbell, Phys. Rev. B 77, 075309 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075309
118.
118.G. Abrasonis, W. Möller, and X. X. Ma, Phys. Rev. Lett. 96, 065901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.065901
119.
119.C. Yang, N. P.-O. Homman, K. Malmqvist, L. Johansson, N. M. Halden, V. Barbin, S. H. Sie, and G. Remond, Scanning Microsc. 9, 43 (1995).
120.
120.J. Samela and K. Nordlund, Phys. Rev. B 76, 125434 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125434
121.
121.J. Roth, in Sputtering by Particle Bombardment, edited by R. Behrisch (Springer, Berlin, 1981), Vol. I, pp. 91146.
122.
122.J. Küppers, Surf. Sci. Rep. 22, 249 (1995).
http://dx.doi.org/10.1016/0167-5729(96)80002-1
123.
123.E. Salonen, K. Nordlund, J. Keinonen, and C. H. Wu, Phys. Rev. B 63, 195415 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.195415
124.
124.A. V. Krasheninnikov, K. Nordlund, E. Salonen, J. Keinonen, and C. H. Wu, Comput. Mater. Sci. 25, 427 (2002).
http://dx.doi.org/10.1016/S0927-0256(02)00318-X
125.
125.C. Björkas, K. Vörtler, K. Nordlund, D. Nishijima, and R. Doerner, New J. Phys. 11, 123017 (2009).
http://dx.doi.org/10.1088/1367-2630/11/12/123017
126.
126.M. Toulemonde, W. Assman, C. Trautmann, F. Gruner, H. D. Mieskes, H. Kucal, and Z. G. Wang, Nucl. Instrum. Methods Phys. Res. B 212, 346 (2003).
http://dx.doi.org/10.1016/S0168-583X(03)01721-X
127.
127.K. Nakayama and J. H. Weaver, Phys. Rev. Lett. 82, 980 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.980
128.
128.A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, Phys. Rev. B 49, 12457 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.12457
129.
129.P. Ehrhart, Atomic defects in metals, Landolt-Bornstein, New Series III Vol. 25 (Springer, Berlin, 1991), Chap. 2, p. 88.
130.
130.A. F. Voter, F. Montalenti, and T. C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002).
http://dx.doi.org/10.1146/annurev.matsci.32.112601.141541
131.
131.B. P. Uberuaga, S. J. Stuart, and A. F. Voter, Phys. Rev. B 75, 014301 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.014301
132.
132.J. Kotakoski, A. V. Krasheninnikov, and K. Nordlund, J. Comput. Theor. Nanosci. 4, 1153 (2007).
133.
133.A. J. Nozik, Annu. Rev. Phys. Chem. 52, 193 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.193
134.
134.It is a matter of certain controversy whether temperature can be used to describe the atoms in a collision cascade since the system is of course not in thermodynamic equilibrium. However, it has been shown that after about three lattice vibrations, atoms do have a Maxwell–Boltzmann velocity distribution (Ref. 85). Hence we consider the use of Kelvin scale temperature as a practical way of describing the average kinetic energy of atoms. This also conforms to common usage of temperature units in other fields dealing with nonequilibrium systems, such as plasma physics.
135.
135.T. T. Järvi, J. A. Pakarinen, A. Kuronen, and K. Nordlund, EPL 82, 26002 (2008).
http://dx.doi.org/10.1209/0295-5075/82/26002
136.
136.T. Kunert and R. Schmidt, Phys. Rev. Lett. 86, 5258 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5258
137.
137.J. M. Pruneda, D. Sánchez-Portal, A. Arnau, J. I. Juaristi, and E. Artacho, Phys. Rev. Lett. 99, 235501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.235501
138.
138.A. V. Krasheninnikov, Y. Miyamoto, and D. Tománek, Phys. Rev. Lett. 99, 016104 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.016104
139.
139.M. Quijada, R. Díez-Muiño, and P. M. Echenique, Nanotechnology 16, S176 (2005).
http://dx.doi.org/10.1088/0957-4484/16/5/008
140.
140.M. Ishigami, H. Choi, S. Aloni, S. G. Louie, M. L. Cohen, and A. Zettl, Phys. Rev. Lett. 93, 196803 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.196803
141.
141.L. Tapasztó, G. Dobrik, P. Nemes-Incze, G. Vertesy, P. Lambin, and L. P. Biró, Phys. Rev. B 78, 233407 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.233407
142.
142.G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, and E. Rimini, Carbon 47, 3201 (2009).
http://dx.doi.org/10.1016/j.carbon.2009.07.033
143.
143.K. Nordlund, J. Keinonen, and T. Mattila, Phys. Rev. Lett. 77, 699 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.699
144.
144.D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Plenum, New York, 1996).
145.
145.R. C. Birtcher, S. E. Donnelly, M. Song, K. Furuya, K. Mitsuishi, and C. W. Allen, Phys. Rev. Lett. 83, 1617 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1617
146.
146.M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, and K. Urban, Ultramicroscopy 75, 53 (1998).
http://dx.doi.org/10.1016/S0304-3991(98)00048-5
147.
147.M. I. Current, C. -Y. Wei, and D. N. Seidman, Philos. Mag. A 47, 407 (1983).
http://dx.doi.org/10.1080/01418618308245236
148.
148.M. I. Guseva, A. L. Suvorov, S. N. Korshunov, and N. E. Lazarev, J. Nucl. Mater. 266-269, 222 (1999).
http://dx.doi.org/10.1016/S0022-3115(98)00819-8
149.
149.M. K. Miller, A. Cerezo, M. G. Hetherington, and G. D. W. Smith, Atom Probe Field-Ion Microscopy (Oxford University Press, Oxford, 1996), for a brief introduction, see also http://www.materials.ox.ac.uk/fim/whatis3dap.html.
150.
150.J. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. D. Williams, Phys. Rev. Lett. 102, 236805 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.236805
151.
151.G. D. Saraiva, A. G. S. Filho, G. Braunstein, E. B. Barros, J. M. Filho, E. C. Moreira, S. B. Fagan, D. L. Baptista, Y. A. Kim, H. Muramatsu, M. Endo, and M. S. Dresselhaus, Phys. Rev. B 80, 155452 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.155452
152.
152.R. Arenal, A. C. Ferrari, S. Reich, L. Wirtz, J. Mevellec, S. Lefrant, and A. L. A. Rubio, Nano Lett. 6, 1812 (2006).
http://dx.doi.org/10.1021/nl0602544
153.
153.L. Khriachtchev, M. Räsänen, S. Novikov, and L. Pavesi, Appl. Phys. Lett. 85, 1511 (2004).
http://dx.doi.org/10.1063/1.1781733
154.
154.L. Khriachtchev, Top. Appl. Phys. 100, 403 (2006).
http://dx.doi.org/10.1007/11378235_20
155.
155.A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
156.
156.Z. Ni, Q. Li, L. Yan, J. Gong, and D. Zhu, Diamond Relat. Mater. 17, 365 (2008).
http://dx.doi.org/10.1016/j.diamond.2008.01.030
157.
157.J. A. Nichols, H. Saito, C. Deck, and P. R. Bandaru, J. Appl. Phys. 102, 064306 (2007).
http://dx.doi.org/10.1063/1.2783945
158.
158.S. Mathew, U. M. Bhatta, J. Ghatak, B. R. Sekhar, and B. N. Dev, Carbon 45, 2659 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.08.001
159.
159.Y. Zhu, T. Yi, B. Zheng, and L. Cao, Appl. Surf. Sci. 137, 83 (1999).
http://dx.doi.org/10.1016/S0169-4332(98)00372-9
160.
160.A. K. Chakraborty, R. A. J. Woolley, Y. V. Butenko, V. R. Dhanak, L. Siller, and M. R. C. Hunt, Carbon 45, 2744 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.09.036
161.
161.F. Beuneu, C. l’Huillier, J. -P. Salvetat, J. -M. Bonard, and L. Forró, Phys. Rev. B 59, 5945 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5945
162.
162.A. R. Adhikari, H. Bakhru, P. M. Ajayan, R. Benson, and M. Chipara, Nucl. Instrum. Methods Phys. Res. B 265, 347 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.09.001
163.
163.E. Najafi, D. Hernández Cruz, M. Obst, A. P. Hitchcock, B. Douhard, J. Pireaux, and A. Felten, Small 4, 2279 (2008).
http://dx.doi.org/10.1002/smll.200800439
164.
164.B. -K. Teo, EXAFS: Basic Principles and Data Analysis (Springer, Berlin, 1986).
165.
165.Q. Xu, I. Sharp, C. Yuan, D. Yi, C. Liao, A. Glaeser, A. Minor, J. Beeman, M. Ridgway, P. Kluth, J. W. Ager III, D. C. Chrzan, and E. E. Haller, Phys. Rev. Lett. 97, 155701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.155701
166.
166.B. Johannessen, P. Kluth, D. J. Llewellyn, G. J. Foran, D. J. Cookson, and M. C. Ridgway, Appl. Phys. Lett. 90, 073119 (2007).
http://dx.doi.org/10.1063/1.2644413
167.
167.V. Skakalova, S. Kaiser and A. B. Roth, Phys. Status Solidi B 2, 62 (2008).
168.
168.Y. Fan, B. R. Goldsmith, and P. G. Collins, Nature Mater. 4, 906 (2005).
http://dx.doi.org/10.1038/nmat1516
169.
169.Identification of Defects in Semiconductors (Semiconductors and Semimetals, edited by M. Stavola (Academic, San Diego, 1999), Vol. 51B.
170.
170.K. Nordlund, T. Ahlgren, and E. Rauhala (unpublished).
171.
171.L. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959).
http://dx.doi.org/10.1103/PhysRev.114.687
172.
172.J. Tersoff, Phys. Rev. B 37, 6991 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.6991
173.
173.J. E. Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).
http://dx.doi.org/10.1098/rspa.1924.0082
174.
174.A. V. Krasheninnikov, K. Nordlund, M. Sirviö, E. Salonen, and J. Keinonen, Phys. Rev. B 63, 245405 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245405
175.
175.A. V. Krasheninnikov, K. Nordlund, and J. Keinonen, Phys. Rev. B 65, 165423 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165423
176.
176.F. Z. Cui, Z. J. Chen, J. Ma, G. R. Xia, and Y. Zhai, Phys. Lett. A 295, 55 (2002).
http://dx.doi.org/10.1016/S0375-9601(02)00066-X
177.
177.J. F. Ziegler and J. P. Biersack, Program TRIM, http://www.srim.org, 2003.
178.
178.J. A. V. Pomoell, A. V. Krasheninnikov, K. Nordlund, and J. Keinonen, J. Appl. Phys. 96, 2864 (2004).
http://dx.doi.org/10.1063/1.1776317
179.
179.F. Djurabekova, M. Backman, and K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 266, 2683 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.03.099
180.
180.Atomic and Ion Collisions in Solids and at Surfaces: Theory, Simulation, and Applications, edited by R. Smith (Cambridge University Press, Cambridge, 1997).
http://dx.doi.org/10.1017/CBO9780511524325
181.
181.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989).
182.
182.R. S. Averback and T. Diaz de la Rubia, in Solid State Physics, edited by H. Ehrenfest and F. Spaepen (Academic, New York, 1998), Vol. 51, pp. 281402.
183.
183.K. Nordlund, Comput. Mater. Sci. 3, 448 (1995).
http://dx.doi.org/10.1016/0927-0256(94)00085-Q
184.
184.W. A. McKinley and H. Feshbach, Phys. Rev. 74, 1759 (1948).
http://dx.doi.org/10.1103/PhysRev.74.1759
185.
185.L. R. Greenwood, J. Nucl. Mater. 216, 29 (1994).
http://dx.doi.org/10.1016/0022-3115(94)90004-3
186.
186.J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM—The Stopping and Range of Ions in Matter (SRIM Co., Chester, 2008).
187.
187.H. Zhu and R. S. Averback, Nucl. Instrum. Methods Phys. Res. B 83, 334 (1993).
http://dx.doi.org/10.1016/0168-583X(93)95852-V
188.
188.D. W. Brenner, Phys. Rev. B 42, 9458 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.9458
189.
189.D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).
http://dx.doi.org/10.1088/0953-8984/14/4/312
190.
190.S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).
http://dx.doi.org/10.1063/1.481208
191.
191.M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984);
http://dx.doi.org/10.1080/01418618408244210
191.M. W. Finnis and J. E. Sinclair, Philos. Mag. A53, 161E (1986).
http://dx.doi.org/10.1080/01418618608242815
192.
192.M. S. Daw, S. M. Foiles, and M. I. Baskes, Mater. Sci. Rep. 9, 251 (1993).
http://dx.doi.org/10.1016/0920-2307(93)90001-U
193.
193.C. L. Kelchner, D. M. Halstead, L. S. Perkins, N. M. Wallace, and A. E. DePristo, Surf. Sci. 310, 425 (1994) (and references therein).
http://dx.doi.org/10.1016/0039-6028(94)91405-2
194.
194.F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.22
195.
195.K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B 66, 035205 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.035205
196.
196.K. Albe, K. Nordlund, and R. S. Averback, Phys. Rev. B 65, 195124 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195124
197.
197.P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Muller, and K. Albe, J. Phys.: Condens. Matter 18, 6585 (2006).
http://dx.doi.org/10.1088/0953-8984/18/29/003
198.
198.J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens. Matter 15, 5649 (2003).
http://dx.doi.org/10.1088/0953-8984/15/32/324
199.
199.N. Juslin, P. Erhart, P. Träskelin, J. Nord, K. O. E. Henriksson, K. Nordlund, E. Salonen, and K. Albe, J. Appl. Phys. 98, 123520 (2005).
http://dx.doi.org/10.1063/1.2149492
200.
200.K. O. E. Henriksson and K. Nordlund, Phys. Rev. B 79, 144107 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.144107
201.
201.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
202.
202.H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
203.
203.E. M. Bringa and R. E. Johnson, Nucl. Instrum. Methods Phys. Res. B 143, 513 (1998).
http://dx.doi.org/10.1016/S0168-583X(98)00405-4
204.
204.S. Mookerjee, M. Beuve, S. A. Khan, M. Toulemonde, and A. Roy, Phys. Rev. B 78, 045435 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045435
205.
205.R. Martin, Electronic Structure (Cambridge University Press, Cambridge, 2004).
206.
206.O. V. Yazyev, I. Tavernelli, U. Rothlisberger, and L. Helm, Phys. Rev. B 75, 115418 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115418
207.
207.E. Holmström, A. Kuronen, and K. Nordlund, Phys. Rev. B 78, 045202 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045202
208.
208.D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner, Phys. Rev. B 51, 12947 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.12947
209.
209.M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7260
210.
210.A. V. Krasheninnikov, F. Banhart, J. X. Li, A. S. Foster, and R. Nieminen, Phys. Rev. B 72, 125428 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125428
211.
211.T. Loponen, A. V. Krasheninnikov, M. Kaukonen, and R. M. Nieminen, Phys. Rev. B 74, 073409 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.073409
212.
212.A. Zobelli, A. Gloter, C. P. Ewels, G. Seifert, and C. Colliex, Phys. Rev. B 75, 245402 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245402
213.
213.Z. Wang, F. Gao, J. Li, X. Zu, and W. J. Weber, Nanotechnology 20, 075708 (2009).
http://dx.doi.org/10.1088/0957-4484/20/7/075708
214.
214.T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Köhler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo, and S. Suhai, J. Phys.: Condens. Matter 14, 3015 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/313
215.
215.A. V. Krasheninnikov, K. Nordlund, P. O. Lehtinen, A. S. Foster, A. Ayuela, and R. M. Nieminen, Phys. Rev. B 69, 073402 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.073402
216.
216.A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, Chem. Phys. Lett. 418, 132 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.10.106
217.
217.C. Xu, C. Wang, C. Chan, and K. Ho, J. Phys.: Condens. Matter 4, 6047 (1992).
http://dx.doi.org/10.1088/0953-8984/4/28/006
218.
218.M. Terrones, P. M. Ajayan, F. Banhart, X. Blasé, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, T. Seeger, and H. Terrones, Appl. Phys. A: Mater. Sci. Process. 65, 355 (2002).
219.
219.T. Schenkel, M. A. Briere, K. Schmidt-Böcking, K. Bethge, and D. H. Schneider, Phys. Rev. Lett. 78, 2481 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2481
220.
220.Y. Miyamoto and H. Zhang, Phys. Rev. B 77, 161402 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.161402
221.
221.O. Sugino and Y. Miyamoto, Phys. Rev. B 59, 2579 (1999);
http://dx.doi.org/10.1103/PhysRevB.59.2579
221.O. Sugino and Y. Miyamoto, Phys. Rev. B66, 089901(E) (2002).
http://dx.doi.org/10.1103/PhysRevB.66.089901
222.
222.Y. Miyamoto, S. Berber, M. Yoon, A. Rubio, and D. Tománek, Chem. Phys. Lett. 392, 209 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.05.070
223.
223.Y. Miyamoto, A. Rubio, and D. Tománek, Phys. Rev. Lett. 97, 126104 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.126104
224.
224.J. F. Ziegler, SRIM-2003 software package, available online at http://www.srim.org.
225.
225.M. T. Robinson and I. M. Torrens, Phys. Rev. B 9, 5008 (1974).
http://dx.doi.org/10.1103/PhysRevB.9.5008
226.
226.M. T. Robinson, Phys. Rev. B 40, 10717 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.10717
227.
227.K. M. Beardmore and N. Grønbech-Jensen, Phys. Rev. E 57, 7278 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.7278
228.
228.J. Sillanpää, K. Nordlund, and J. Keinonen, Phys. Rev. B 62, 3109 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.3109
229.
229.J. Sillanpää, J. Peltola, K. Nordlund, J. Keinonen, and M. J. Puska, Phys. Rev. B 63, 134113 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.134113
230.
230.L. Zhigilei, P. B. S. Kodali, and B. J. Garrison, J. Phys Chem. B 102, 2845 (1998).
http://dx.doi.org/10.1021/jp9733781
231.
231.C. Schäfer, H. M. Urbassek, and L. V. Zhigilei, Phys. Rev. B 66, 115404 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.115404
232.
232.M. Toulemonde, C. Dufour, A. Meftah, and E. Paunier, Nucl. Instrum. Methods Phys. Res. B 166-167, 903 (2000).
http://dx.doi.org/10.1016/S0168-583X(99)00799-5
233.
233.E. M. Bringa and R. E. Johnson, Phys. Rev. Lett. 88, 165501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.165501
234.
234.H. M. Urbassek, H. Kafemann, and R. E. Johnson, Phys. Rev. B 49, 786 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.786
235.
235.D. Schwen and E. M. Bringa, Nucl. Instrum. Methods Phys. Res. B 256, 187 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.12.001
236.
236.R. Devanathan, P. Durham, J. Du, L. R. Corrales, and E. M. Bringa, Nucl. Instrum. Methods Phys. Res. B 255, 172 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.11.021
237.
237.D. M. Duffy, N. Itoh, A. M. Rutherford, and A. M. Stoneham, J. Phys.: Condens. Matter 20, 082201 (2008).
http://dx.doi.org/10.1088/0953-8984/20/8/082201
238.
238.D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.064114
239.
239.L. Koči, E. M. Bringa, D. S. Ivanov, J. Hawreliak, J. McNaney, A. Higginbotham, L. V. Zhigilei, A. B. Belonoshko, B. A. Remington, and R. Ahuja, Phys. Rev. B 74, 012101 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.012101
240.
240.A. Caro and M. Victoria, Phys. Rev. A Gen. Phys. 40, 2287 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.2287
241.
241.M. W. Finnis, P. Agnew, and A. J. E. Foreman, Phys. Rev. B 44, 567 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.567
242.
242.I. Koponen, J. Appl. Phys. 72, 1194 (1992).
http://dx.doi.org/10.1063/1.351804
243.
243.Q. Hou, M. Hou, L. Bardotti, B. Prevel, P. Melinon, and A. Perez, Phys. Rev. B 62, 2825 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.2825
244.
244.D. M. Duffy and A. M. Rutherford, J. Phys.: Condens. Matter 19, 016207 (2007).
http://dx.doi.org/10.1088/0953-8984/19/1/016207
245.
245.J. le Page, D. R. Mason, C. P. Race, and W. M. C. Foulkes, New J. Phys. 11, 013004 (2009).
http://dx.doi.org/10.1088/1367-2630/11/1/013004
246.
246.A. Duvenbeck, O. Weingart, V. Buss, and A. Wucher, New J. Phys. 9, 38 (2007).
http://dx.doi.org/10.1088/1367-2630/9/2/038
247.
247.A. Duvenbeck, B. Weidtmann, O. Weingart, and A. Wucher, Phys. Rev. B 77, 245444 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245444
248.
248.W. M. Young and E. W. Elcock, Proc. Phys. Soc. London 89, 735 (1966).
http://dx.doi.org/10.1088/0370-1328/89/3/329
249.
249.A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. 17, 10 (1975).
http://dx.doi.org/10.1016/0021-9991(75)90060-1
250.
250.K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. 95, 1090 (1991).
http://dx.doi.org/10.1063/1.461138
251.
251.F. G. Djurabekova, L. Malerba, C. Domain, and C. S. Becquart, Nucl. Instrum. Methods Phys. Res. B 255, 47 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.11.009
252.
252.J. Dalla Torre, J. Bocquet, N. V. Doan, E. Adam, and A. Barbu, Philos. Mag. A 85, 549 (2005).
253.
253.T. Opplestrup, V. V. Bulatov, G. H. Gilmer, M. H. Kalos, and B. Sadigh, Phys. Rev. Lett. 97, 230602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.230602
254.
254.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
255.
255.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).
http://dx.doi.org/10.1038/318162a0
256.
256.A. Jorio, G. Dresselhaus, and M. Dresselhaus, Topics in Applied Physics (Springer, Berlin, 2008), Vol. 111.
257.
257.C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.205501
258.
258.A. Chuvilin, J. C. Meyer, G. Algara-Siller, and U. Kaiser, New J. Phys. 11, 083019 (2009).
http://dx.doi.org/10.1088/1367-2630/11/8/083019
259.
259.A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, D. P. Brown, A. V. Krasheninnikov, A. S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S. D. Shandakov, G. Lolli, D. E. Resasco, M. Choi, D. Tománek, and E. I. Kauppinen, Nat. Nanotechnol. 2, 156 (2007).
http://dx.doi.org/10.1038/nnano.2007.37
260.
260.D. Golberg, Y. Bando, O. Stéphan, and K. Kurashima, Appl. Phys. Lett. 73, 2441 (1998).
http://dx.doi.org/10.1063/1.122475
261.
261.D. Golberg, Y. Bando, K. Kurashima, and T. Sasaki, Appl. Phys. Lett. 72, 2108 (1998).
http://dx.doi.org/10.1063/1.121291
262.
262.J. A. Rodríguez-Manzo, M. Terrones, H. Terrones, H. W. Kroto, L. Sun, and F. Banhart, Nat. Nanotechnol. 2, 307 (2007).
http://dx.doi.org/10.1038/nnano.2007.107
263.
263.J. A. Rodríguez-Manzo, I. Janowska, C. Pham-Huu, A. Tolvanen, A. V. Krasheninnikov, K. Nordlund, and F. Banhart, Small 5, 2710 (2009).
http://dx.doi.org/10.1002/smll.200900590
264.
264.J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, Phys. Rev. 120, 1229 (1960).
http://dx.doi.org/10.1103/PhysRev.120.1229
265.
265.J. Pomoell, A. V. Krasheninnikov, K. Nordlund, and J. Keinonen, Nucl. Instrum. Methods Phys. Res. B 206, 18 (2003).
http://dx.doi.org/10.1016/S0168-583X(03)00703-1
266.
266.J. A. Åström, A. V. Krasheninnikov, and K. Nordlund, Phys. Rev. Lett. 93, 215503 (2004);
http://dx.doi.org/10.1103/PhysRevLett.93.215503
266.J. A. Åström, A. V. Krasheninnikov, and K. Nordlund, Phys. Rev. Lett.94, 029902(E) (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.029902
267.
267.J. Kotakoski, J. Pomoell, A. V. Krasheninnikov, and K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 228, 31 (2005).
http://dx.doi.org/10.1016/j.nimb.2004.10.018
268.
268.J. Kotakoski, A. V. Krasheninnikov, and K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 240, 810 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.06.200
269.
269.Y. Ma, A. S. Foster, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. B 72, 205416 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205416
270.
270.J. Kotakoski and K. Nordlund, New J. Phys. 8, 115 (2006).
http://dx.doi.org/10.1088/1367-2630/8/7/115
271.
271.S. K. Pregler and S. B. Sinnott, Phys. Rev. B 73, 224106 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.224106
272.
272.B. Ni and S. B. Sinnott, Phys. Rev. B 61, R16343 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.R16343
273.
273.Y. Hu, D. L. Irving, and S. B. Sinnott, Chem. Phys. Lett. 422, 137 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.02.049
274.
274.Z. Xu, W. Zhang, Z. Zhu, C. Ren, Y. Li, and P. Huai, J. Appl. Phys. 106, 043501 (2009).
http://dx.doi.org/10.1063/1.3194784
275.
275.J. Nygård and D. Cobden, Appl. Phys. Lett. 79, 4216 (2001).
http://dx.doi.org/10.1063/1.1428117
276.
276.A. Tolvanen, J. Kotakoski, A. V. Krasheninnikov, and K. Nordlund, Appl. Phys. Lett. 91, 173109 (2007).
http://dx.doi.org/10.1063/1.2800807
277.
277.J. Kotakoski, A. V. Krasheninnikov, and K. Nordlund, Phys. Rev. B 74, 245420 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.245420
278.
278.J. M. Carlsson and M. Scheffler, Phys. Rev. Lett. 96, 046806 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.046806
279.
279.A. T. Lee, Y. Kang, K. J. Chang, and I. Lee, Phys. Rev. B 79, 174105 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.174105
280.
280.W. Orellana, Phys. Rev. B 80, 075421 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075421
281.
281.A. V. Krasheninnikov, K. Nordlund, and J. Keinonen, Appl. Phys. Lett. 81, 1101 (2002).
http://dx.doi.org/10.1063/1.1499224
282.
282.R. L. Federizzi, C. S. Moura, and L. Amaral, J. Phys. Chem. B 110, 23215 (2006).
http://dx.doi.org/10.1021/jp064907g
283.
283.E. Salonen, A. V. Krasheninnikov, and K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 193, 603 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)00861-3
284.
284.P. Wesolowski, Y. Lyutovich, F. Banhart, H. D. Carstanjen, and H. Kronmüller, Appl. Phys. Lett. 71, 1948 (1997).
http://dx.doi.org/10.1063/1.119990
285.
285.A. Kumar, D. K. Avasthi, J. C. Pivin, A. Tripathi, and F. Singh, Phys. Rev. B 74, 153409 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.153409
286.
286.I. Ponomareva and L. Chernozatonskii, JETP Lett. 79, 375 (2004).
http://dx.doi.org/10.1134/1.1772435
287.
287.R. Astala, M. Kaukonen, R. M. Nieminen, G. Jungnickel, and T. Frauenheim, Phys. Rev. B 63, 081402 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.081402
288.
288.T. Yumura, M. Kertesz, and S. Iijima, J. Phys. Chem. B 111, 1099 (2007).
http://dx.doi.org/10.1021/jp066508r
289.
289.I. Jang, S. B. Sinnott, D. Danailov, and P. Keblinski, Nano Lett. 4, 109 (2004).
http://dx.doi.org/10.1021/nl034946t
290.
290.M. Yasuda, Y. Kimoto, K. Tada, H. Mori, S. Akita, Y. Nakayama, and Y. Hirai, Phys. Rev. B 75, 205406 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205406
291.
291.T. Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff, Phys. Rev. B 65, 235430 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.235430
292.
292.Y. Lifshitz, T. Köhler, T. Frauenheim, I. Guzmann, A. Hoffman, R. Q. Zhang, X. T. Zhou, and S. T. Lee, Science 297, 1531 (2002).
http://dx.doi.org/10.1126/science.1074551
293.
293.J. H. Warner, F. Schäffel, G. Zhong, M. H. Rümmeli, B. Büchner, J. Robertson, and G. Briggs, ACS Nano 3, 1557 (2009).
http://dx.doi.org/10.1021/nn900362a
294.
294.F. Ding, K. Jiao, M. Wu, and B. I. Yakobson, Phys. Rev. Lett. 98, 075503 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.075503
295.
295.M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim, Nat. Nanotechnol. 3, 676 (2008).
http://dx.doi.org/10.1038/nnano.2008.280
296.
296.P. Ehrhart, K. H. Robrock, and H. R. Shober, in Physics of Radiation Effects in Crystals, edited by R. A. Johnson and A. N. Orlov (Elsevier, Amsterdam, 1986), p. 3.
297.
297.A. Misra, P. K. Tyagi, M. K. Singh, D. S. Misra, J. Ghatak, P. V. Satyam, and D. K. Avasthi, Diamond Relat. Mater. 15, 300 (2006).
http://dx.doi.org/10.1016/j.diamond.2005.10.021
298.
298.A. J. Lu and B. C. Pan, Phys. Rev. Lett. 92, 105504 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.105504
299.
299.J. Rossato, R. J. Baierle, A. Fazzio, and R. Mota, Nano Lett. 5, 197 (2005).
http://dx.doi.org/10.1021/nl048226d
300.
300.S. Berber and A. Oshiyama, Physica B 376-377, 272 (2006).
http://dx.doi.org/10.1016/j.physb.2005.12.070
301.
301.C. Wang and C. Y. Wang, Eur. Phys. J. B 54, 243 (2006).
http://dx.doi.org/10.1140/epjb/e2006-00448-6
302.
302.S. Berber and A. Oshiyama, Phys. Rev. B 77, 165405 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.165405
303.
303.P. O. Lehtinen, A. S. Foster, Y. Ma, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. Lett. 93, 187202 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.187202
304.
304.R. Telling, C. Ewels, A. El-Barbary, and M. Heggie, Nature Mater. 2, 333 (2003).
http://dx.doi.org/10.1038/nmat876
305.
305.A. A. El-Barbary, R. H. Telling, C. P. Ewels, M. I. Heggie, and P. R. Briddon, Phys. Rev. B 68, 144107 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.144107
306.
306.L. Li, S. Reich, and J. Robertson, Phys. Rev. B 72, 184109 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.184109
307.
307.A. M. Stoneham, Theory of Defects in Solids (Clarendon, Oxford, 1975).
308.
308.A. Kis, K. Jensen, S. Aloni, W. Mickelson, and A. Zettl, Phys. Rev. Lett. 97, 025501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.025501
309.
309.R. G. Amorim, A. Fazzio, A. Antonelli, F. D. Novaes, and A. da Silva, Nano Lett. 7, 2459 (2007).
http://dx.doi.org/10.1021/nl071217v
310.
310.G. Lee, C. Z. Wang, E. Yoon, N. Hwang, D. Kim, and K. M. Ho, Phys. Rev. Lett. 95, 205501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.205501
311.
311.R. Y. Oeiras, F. M. Araújo-Moreira, and E. Z. da Silva, Phys. Rev. B 80, 073405 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.073405
312.
312.J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, Nano Lett. 8, 3582 (2008).
http://dx.doi.org/10.1021/nl801386m
313.
313.O. Gülseren, T. Yildirim, and S. Ciraci, Phys. Rev. Lett. 87, 116802 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.116802
314.
314.M. Zhao, Y. Xia, Y. Ma, M. Ying, X. Liu, and L. Mei, Phys. Rev. B 66, 155403 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.155403
315.
315.A. V. Krasheninnikov, K. Nordlund, P. O. Lehtinen, A. S. Foster, A. Ayuela, and R. M. Nieminen, Carbon 42, 1021 (2004).
http://dx.doi.org/10.1016/j.carbon.2003.12.025
316.
316.P. O. Lehtinen, A. S. Foster, A. Ayuela, A. Krasheninnikov, K. Nordlund, and R. M. Nieminen, Phys. Rev. Lett. 91, 017202 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.017202
317.
317.R. Singh and P. Kroll, J. Phys.: Condens. Matter 21, 196002 (2009).
http://dx.doi.org/10.1088/0953-8984/21/19/196002
318.
318.M. T. Lusk and L. D. Carr, Phys. Rev. Lett. 100, 175503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.175503
319.
319.T. Hashi, Y. Uramoto, and M. Saito, Jpn. J. Appl. Phys. 47, 6623 (2008).
http://dx.doi.org/10.1143/JJAP.47.6623
320.
320.L. Tsetseris and S. T. Pantelides, Carbon 47, 901 (2009).
http://dx.doi.org/10.1016/j.carbon.2008.12.002
321.
321.Y. Ma, Phys. Rev. B 76, 075419 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075419
322.
322.A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80661-3
323.
323.Z. Wang, F. Gao, J. Li, X. Zu, and W. J. Weber, J. Appl. Phys. 106, 084305 (2009).
http://dx.doi.org/10.1063/1.3238307
324.
324.K. Suenaga, H. Wakabayashi, M. Koshino, Y. Sato, K. Urita, and S. Iijima, Nat. Nanotechnol. 2, 358 (2007).
http://dx.doi.org/10.1038/nnano.2007.141
325.
325.B. I. Yakobson, Appl. Phys. Lett. 72, 918 (1998).
http://dx.doi.org/10.1063/1.120873
326.
326.M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B 57, R4277 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R4277
327.
327.G. G. Samsonidze, G. G. Samsonidze, and B. I. Yakobson, Phys. Rev. Lett. 88, 065501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.065501
328.
328.E. Ertekin, D. C. Chrzan, and M. S. Daw, Phys. Rev. B 79, 155421 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155421
329.
329.B. C. Pan, W. S. Yang, and J. Yang, Phys. Rev. B 62, 12652 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.12652
330.
330.L. G. Zhou and S. Shi, Appl. Phys. Lett. 83, 1222 (2003).
http://dx.doi.org/10.1063/1.1599961
331.
331.J. Ma, D. Alfè, A. Michaelides, and E. Wang, Phys. Rev. B 80, 033407 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.033407
332.
332.A. da Silva, A. Fazzio, and A. Antonelli, Nano Lett. 5, 1045 (2005).
http://dx.doi.org/10.1021/nl050457c
333.
333.J. A. Rodriguez-Manzo and F. Banhart, Nano Lett. 9, 2285 (2009).
http://dx.doi.org/10.1021/nl900463u
334.
334.O. Lehtinen, L. Sun, T. Nikitin, A. V. Krasheninnikov, L. Khriachtchev, J. A. Rodríguez-Manzo, M. Terrones, F. Banhart, and J. Keinonen, Physica E (Amsterdam) 40, 2618 (2008).
http://dx.doi.org/10.1016/j.physe.2007.07.011
335.
335.Y. H. Lee, S. G. Kim, and D. Tománek, Phys. Rev. Lett. 78, 2393 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2393
336.
336.M. Heggie, B. R. Eggen, C. P. Ewels, P. Leary, S. Ali, G. Jungnickel, R. Jones, and P. R. Briddon, Proc.-Electrochem. Soc. 98, 60 (1998).
337.
337.F. Banhart, T. Füller, P. Redlich, and P. M. Ajayan, Chem. Phys. Lett. 269, 349 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00269-8
338.
338.Y. Gan, J. Kotakoski, A. V. Krasheninnikov, K. Nordlun, and F. Banhart, New J. Phys. 10, 023022 (2008).
http://dx.doi.org/10.1088/1367-2630/10/2/023022
339.
339.P. A. Thrower and R. M. Mayer, Phys. Status Solidi A 47, 11 (1978).
http://dx.doi.org/10.1002/pssa.2210470102
340.
340.C. Xu, C. L. Fu, and D. Pedraza, Phys. Rev. B 48, 13273 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13273
341.
341.Y. Gan and F. Banhart, Adv. Mater. 20, 4751 (2008).
http://dx.doi.org/10.1002/adma.200800574
342.
342.C. P. Ewels, M. I. Heggie, and P. R. Briddon, Chem. Phys. Lett. 351, 178 (2002).
http://dx.doi.org/10.1016/S0009-2614(01)01371-9
343.
343.C. Jin, K. Suenaga, and S. Iijima, Nano Lett. 8, 1127 (2008).
http://dx.doi.org/10.1021/nl0732676
344.
344.T. Tanabe, Phys. Scr., T T64, 7 (1996).
http://dx.doi.org/10.1088/0031-8949/1996/T64/001
345.
345.K. Niwase, Phys. Rev. B 52, 15785 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.15785
346.
346.S. K. Pregler, T. Hayakawa, H. Yasumatsu, T. Kondow, and S. B. Sinnott Nucl. Instrum. Methods Phys. Res. B 262, 240 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.05.030
347.
347.E. Kaxiras and K. C. Pandey, Phys. Rev. Lett. 61, 2693 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2693
348.
348.C. P. Ewels, R. H. Telling, A. A. El-Barbary, M. I. Heggie, and P. R. Briddon, Phys. Rev. Lett. 91, 025505 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.025505
349.
349.F. Tournus, J. Charlier, and P. Mélinon, J. Chem. Phys. 122, 094315 (2005).
http://dx.doi.org/10.1063/1.1855884
350.
350.K. Kim, J. Choi, H. Lee, H. -K. Lee, T. -H. Kang, Y. -H. Han, B. -C. Lee, S. Kim, and B. Kim, J. Phys. Chem. C 112, 13062 (2008).
http://dx.doi.org/10.1021/jp805141e
351.
351.J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature (London) 446, 60 (2007).
http://dx.doi.org/10.1038/nature05545
352.
352.D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009).
http://dx.doi.org/10.1063/1.3062851
353.
353.M. Sammalkorpi, A. V. Krasheninnikov, A. Kuronen, K. Nordlund, and K. Kaski, Nucl. Instrum. Methods Phys. Res. B 228, 142 (2005).
http://dx.doi.org/10.1016/j.nimb.2004.10.036
354.
354.M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, and K. Kaski, Phys. Rev. B 70, 245416 (2004);
http://dx.doi.org/10.1103/PhysRevB.70.245416
354.M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, and K. Kaski, Phys. Rev. B71, 169906(E) (2005).
http://dx.doi.org/10.1103/PhysRevB.71.169906
355.
355.D. E. Luzzi and B. W. Smith, Carbon 38, 1751 (2000).
http://dx.doi.org/10.1016/S0008-6223(00)00088-9
356.
356.E. Hernández, V. Meunier, B. W. Smith, R. Rurali, H. Terrones, M. Nardelli, M. Terrones, D. E. Luzzi, and J. Charlier, Nano Lett. 3, 1037 (2003).
http://dx.doi.org/10.1021/nl034283f
357.
357.H. Terrones, M. Terrones, E. Hernández, N. Grobert, J. Charlier, and P. M. Ajayan, Phys. Rev. Lett. 84, 1716 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1716
358.
358.J. A. Rodriguez-Manzo, F. Banhart, M. Terrones, H. Terrones, N. Grobert, P. M. Ajayan, B. G. Sumpter, V. Meunier, M. Wang, Y. Bando, and D. Golberg, Proc. Natl. Acad. Sci. U.S.A. 106, 4591 (2009).
http://dx.doi.org/10.1073/pnas.0900960106
359.
359.F. Banhart, Nanoscale 1, 201 (2009).
http://dx.doi.org/10.1039/b9nr00127a
360.
360.T. Aref, M. Remeika, and A. Bezryadin, J. Appl. Phys. 104, 024312 (2008).
http://dx.doi.org/10.1063/1.2957590
361.
361.M. D. Fischbein and M. Drndić, Appl. Phys. Lett. 93, 113107 (2008).
http://dx.doi.org/10.1063/1.2980518
362.
362.T. G. Pedersen, C. Flindt, J. Pedersen, N. A. Mortensen, A. Jauho, and K. Pedersen, Phys. Rev. Lett. 100, 136804 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136804
363.
363.Y. Son, M. L. Cohen, and S. G. Louie, Nature (London) 444, 347 (2006).
http://dx.doi.org/10.1038/nature05180
364.
364.Y. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
365.
365.T. D. Yuzvinsky, A. M. Fennimore, W. Mickelson, C. Esquivias, and A. Zettl, Appl. Phys. Lett. 86, 053109 (2005).
http://dx.doi.org/10.1063/1.1857081
366.
366.P. W. Sutter and E. A. Sutter, Nature Mater. 6, 363 (2007).
http://dx.doi.org/10.1038/nmat1894
367.
367.Z. Liu, M. Koshino, K. Suenaga, A. Mrzel, H. Kataura, and S. Iijima, Phys. Rev. Lett. 96, 088304 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.088304
368.
368.D. Golberg and Y. Bando, Recent Res. Dev. Appl. Phys. 2, 1 (1999).
369.
369.D. Golberg, P. S. Dorozhkin, Y. Bando, M. Mitome, and C. C. Tang, Diamond Relat. Mater. 14, 1857 (2005).
http://dx.doi.org/10.1016/j.diamond.2005.06.029
370.
370.K. Pi, K. M. McCreary, W. Bao, W. Han, Y. F. Chiang, Y. Li, S. Tsai, C. N. Lau, and R. K. Kawakami, Phys. Rev. B 80, 075406 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075406
371.
371.A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö, and R. M. Nieminen, Phys. Rev. Lett. 102, 126807 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.126807
372.
372.E. J. G. Santos, A. Ayuela, S. B. Fagan, J. Mendes Filho, D. L. Azevedo, A. G. Souza Filho, and D. Sánchez-Portal, Phys. Rev. B 78, 195420 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.195420
373.
373.A. V. Krasheninnikov and V. F. Elesin, Surf. Sci. 454-456, 519 (2000).
http://dx.doi.org/10.1016/S0039-6028(00)00088-1
374.
374.E. Stolyarova, D. Stolyarov, K. Bolotin, S. Ryu, L. Liu, K. T. Rim, M. Klima, M. Hybertsen, I. Pogorelsky, I. Pavlishin, J. Hone, P. Kim, H. L. Stormer, V. Yakimenko, and G. Flynn, Nano Lett. 9, 332 (2009).
http://dx.doi.org/10.1021/nl803087x
375.
375.M. Hulman, V. Skákalová, A. V. Krasheninnikov, and S. Roth, Appl. Phys. Lett. 94, 071907 (2009).
http://dx.doi.org/10.1063/1.3077311
376.
376.G. H. Jeong, R. Hatakeyama, T. Hirata, K. Tohji, K. Motomiya, N. Sato, and Y. Kawazoe, Appl. Phys. Lett. 79, 4213 (2001).
http://dx.doi.org/10.1063/1.1427744
377.
377.G. H. Jeong, R. Hatakeyama, T. Hirata, K. Tohji, K. Motomiya, T. Yaguchi, and Y. Kawazoe, Chem. Commun. (Cambridge) 2003, 152.
378.
378.Z. Ni, A. Ishaq, L. Yan, J. Gong, and D. Zhu, J. Phys. D 42, 075408 (2009).
http://dx.doi.org/10.1088/0022-3727/42/7/075408
379.
379.K. Maehashi, H. Ozaki, Y. Ohno, K. Inoue, K. Matsumoto, S. Seki, and S. Tagawa, Appl. Phys. Lett. 90, 023103 (2007).
http://dx.doi.org/10.1063/1.2430680
380.
380.D. W. Boukhvalov and M. I. Katsnelson, Nano Lett. 8, 4373 (2008).
http://dx.doi.org/10.1021/nl802234n
381.
381.A. V. Krasheninnikov, Solid State Commun. 118, 361 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00109-0
382.
382.A. V. Krasheninnikov and K. Nordlund, J. Vac. Sci. Technol. B 20, 728 (2002).
http://dx.doi.org/10.1116/1.1463728
383.
383.V. Skákalová, A. B. Kaiser, Z. Osváth, G. Vértesy, L. P. Biró, and S. Roth, Appl. Phys. A: Mater. Sci. Process. 90, 597 (2008).
http://dx.doi.org/10.1007/s00339-007-4383-0
384.
384.B. D. Weaver, B. J. Landi, and R. P. Raffaelle, Proceedings of the 2nd International Energy Conversion Engineering Conference, Providence, Rhode Island, 16–19 August 2004 (unpublished),.
385.
385.R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 284, 1340 (1999).
http://dx.doi.org/10.1126/science.284.5418.1340
386.
386.A. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fische, A. M. Rao, P. C. Eklund, and R. E. Smalley, Appl. Phys. A: Mater. Sci. Process. 67, 29 (1998).
http://dx.doi.org/10.1007/s003390050734
387.
387.T. V. Sreekumar, T. Liu, S. Kumar, L. Ericson, R. H. Hauge, and R. E. Smalley, Chem. Mater. 15, 175 (2003).
http://dx.doi.org/10.1021/cm020367y
388.
388.K. Nordlund, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 52, 357 (2006).
389.
389.A. V. Krasheninnikov, K. Nordlund, J. Keinonen, and F. Banhart, Phys. Rev. B 66, 245403 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.245403
390.
390.Z. Wang, L. Yu, W. Zhang, Y. Ding, Y. Li, J. Han, Z. Zhu, H. Xu, G. He, Y. Chen, and G. Hu, Phys. Lett. A 324, 321 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.02.001
391.
391.Z. Ni, Q. Li, L. Yan, J. Gong, and D. Zhu, Carbon 46, 376 (2008).
http://dx.doi.org/10.1016/j.carbon.2007.11.018
392.
392.A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Schonenberger, J. -P. Salvetat, J. -M. Bonard, and L. Forró, Appl. Phys. Lett. 73, 274 (1998).
http://dx.doi.org/10.1063/1.121778
393.
393.M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, Phys. Rev. Lett. 95, 065502 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.065502
394.
394.R. S. Lee, H. J. Kim, J. E. Fisher, A. Thess, and R. E. Smalley, Nature (London) 388, 854 (1997).
http://dx.doi.org/10.1038/42206
395.
395.A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, and R. E. Smalley, Nature (London) 388, 257 (1997).
http://dx.doi.org/10.1038/40827
396.
396.L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. Fang, J. L. Allen, and P. C. Eklund, Phys. Rev. B 58, R4195 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R4195
397.
397.C. P. Ewels and M. Glerup, J. Nanosci. Nanotechnol. 5, 1345 (2005).
http://dx.doi.org/10.1166/jnn.2005.304
398.
398.A. H. Nevidomskyy, G. Csányi, and M. C. Payne, Phys. Rev. Lett. 91, 105502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.105502
399.
399.R. Droppa, Jr., C. T. M. Ribeiro, A. R. Zanatta, M. C. dos Santos, and F. Alvarez, Phys. Rev. B 69, 045405 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.045405
400.
400.J. W. Jang, C. E. Lee, S. C. Lyu, T. J. Lee, and C. J. Lee, Appl. Phys. Lett. 84, 2877 (2004).
http://dx.doi.org/10.1063/1.1697624
401.
401.D. Srivastava, M. Menon, C. Daraio, S. Jin, B. Sadanadan, and A. M. Rao, Phys. Rev. B 69, 153414 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.153414
402.
402.L. H. Chan, K. H. Hong, D. Q. Xiao, T. C. Lin, S. H. Lai, W. J. Hsieh, and H. C. Shih, Phys. Rev. B 70, 125408 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.125408
403.
403.R. C. Che, L. -M. Peng, and M. S. Wang, Appl. Phys. Lett. 85, 4753 (2004).
http://dx.doi.org/10.1063/1.1824177
404.
404.H. C. Choi, S. Y. Bae, J. Park, K. Seo, C. Kim, B. Kim, H. J. Song, and H. -J. Shin, Appl. Phys. Lett. 85, 5742 (2004).
http://dx.doi.org/10.1063/1.1835994
405.
405.H. S. Kang and S. Jeong, Phys. Rev. B 70, 233411 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.233411
406.
406.M. Glerup, J. Steinmetz, D. Samaille, O. Stéphan, S. Enouz, A. Loiseau, S. Roth, and P. Bernier, Chem. Phys. Lett. 387, 193 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.02.005
407.
407.Q. Zhao, M. B. Nardelli, and J. Bernholc, Phys. Rev. B 65, 144105 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144105
408.
408.J. Kotakoski, A. V. Krasheninnikov, Y. Ma, A. S. Foster, K. Nordlund, and R. M. Nieminen, Phys. Rev. B 71, 205408 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205408
409.
409.I. Shimoyama, G. Wu, T. Sekiguchi, and Y. Baba, Phys. Rev. B 62, R6053 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R6053
410.
410.M. Mehring, W. Scherer, and A. Weidinger, Phys. Rev. Lett. 93, 206603 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.206603
411.
411.C. Morant, R. Torres, I. Jimenez, J. M. Sanz, and E. Elizalde, J. Nanosci. Nanotechnol. 9, 3633 (2009).
http://dx.doi.org/10.1166/jnn.2009.NS42
412.
412.F. Xu, M. Minniti, P. Barone, A. Sindona, A. Bonanno, and A. Oliva, Carbon 46, 1489 (2008).
http://dx.doi.org/10.1016/j.carbon.2008.06.047
413.
413.F. Xu, M. Minniti, C. Giallombardo, A. Cupolillo, P. Barone, A. Oliva, and L. Papagno, Surf. Sci. 601, 2819 (2007).
http://dx.doi.org/10.1016/j.susc.2006.12.049
414.
414.W. S. Yun, J. Kim, K. H. Park, J. S. Ha, Y. J. Ko, K. Park, S. K. Kim, Y. J. Doh, H. J. Lee, J. P. Salvetat, and L. Forro, J. Vac. Sci. Technol. A 18, 1329 (2000).
http://dx.doi.org/10.1116/1.582349
415.
415.C. Thelander and L. Samuelson, Nanotechnology 13, 108 (2002).
http://dx.doi.org/10.1088/0957-4484/13/1/323
416.
416.G. Hobler, Radiat. Eff. Defects Solids 139, 21 (1996).
http://dx.doi.org/10.1080/10420159608212927
417.
417.A. V. Krasheninnikov and K. Nordlund, Phys. Rev. B 71, 245408 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.245408
418.
418.A. V. Krasheninnikov and K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 228, 21 (2005).
http://dx.doi.org/10.1016/j.nimb.2004.10.016
419.
419.C. S. Moura and L. Amaral, J. Phys. Chem. B 109, 13515 (2005).
http://dx.doi.org/10.1021/jp051637d
420.
420.G. V. Dedkov, Surf. Coat. Technol. 158-159, 75 (2002).
http://dx.doi.org/10.1016/S0257-8972(02)00223-2
421.
421.P. Král and D. Tománek, Phys. Rev. Lett. 82, 5373 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.5373
422.
422.Z. Mao and S. B. Sinnott, Phys. Rev. Lett. 89, 278301 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.278301
423.
423.B. C. Regan, S. Aloni, R. O. Ritchie, U. Dahmen, and A. Zettl, Nature (London) 428, 924 (2004).
http://dx.doi.org/10.1038/nature02496
424.
424.C. S. Moura and L. Amaral, Carbon 45, 1802 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.04.035
425.
425.L. Zheng, Z. Zhu, Y. Li, D. Zhu, and H. Xia, Nucl. Instrum. Methods Phys. Res. B 266, 849 (2008).
http://dx.doi.org/10.1016/j.nimb.2007.10.041
426.
426.S. Bellucci, V. M. Biryukov, Y. A. Chesnokov, V. Guidic, and W. Scandale, Nucl. Instrum. Methods Phys. Res. B 202, 236 (2003).
http://dx.doi.org/10.1016/S0168-583X(02)01863-3
427.
427.Y. -N. Wang and Z. L. Mišković, Phys. Rev. A 69, 022901 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.022901
428.
428.Y. -N. Wang and Z. L. Mišković, Phys. Rev. A 66, 042904 (2002).
http://dx.doi.org/10.1103/PhysRevA.66.042904
429.
429.N. K. Zhevago and V. I. Glebov, Phys. Lett. A 310, 301 (2003).
http://dx.doi.org/10.1016/S0375-9601(03)00241-X
430.
430.D. Borka, D. J. Mowbray, Z. L. Miskovic, S. Petrovic, and N. Neskovic, J. Phys.: Condens. Matter 20, 474212 (2008).
http://dx.doi.org/10.1088/0953-8984/20/47/474212
431.
431.Zh. Zhu, private communication.
432.
432.J. X. Li and F. Banhart, Adv. Mater. 17, 1539 (2005).
http://dx.doi.org/10.1002/adma.200401917
433.
433.D. Ugarte, Chem. Phys. Lett. 209, 99 (1993).
http://dx.doi.org/10.1016/0009-2614(93)87208-K
434.
434.Carbon Nanotubes: Synthesis, Structure, Properties and Applications, edited by M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (Springer, Berlin, 2001).
435.
435.S. Zhang, S. L. Mielke, R. Khare, D. Troya, R. S. Ruoff, G. C. Schatz, and T. Belytschko, Phys. Rev. B 71, 115403 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.115403
436.
436.S. L. Mielke, D. Troya, S. Zhang, J. L. Li, S. Xiao, R. Car, R. S. Ruoff, G. C. Schatz, and T. Belytschko, Chem. Phys. Lett. 390, 413 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.04.054
437.
437.T. Dumitrica, M. Hua, and B. I. Yakobson, Proc. Natl. Acad. Sci. U.S.A. 103, 6105 (2006).
http://dx.doi.org/10.1073/pnas.0600945103
438.
438.J. Yuan and K. M. Liew, Carbon 47, 1526 (2009).
http://dx.doi.org/10.1016/j.carbon.2009.01.048
439.
439.M. -F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).
http://dx.doi.org/10.1126/science.287.5453.637
440.
440.M. Huhtala, A. V. Krasheninnikov, J. Aittoniemi, K. Nordlund, and K. Kaski, Phys. Rev. B 70, 045404 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.045404
441.
441.E. M. Byrne, M. A. McCarthy, Z. Xia, and W. A. Curtin, Phys. Rev. Lett. 103, 045502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.045502
442.
442.B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin, Science 290, 1331 (2000).
http://dx.doi.org/10.1126/science.290.5495.1331
443.
443.B. Vigolo, P. Poulin, M. Lucas, P. Launois, and P. Bernier, Appl. Phys. Lett. 81, 1210 (2002).
http://dx.doi.org/10.1063/1.1497706
444.
444.P. Poulin, B. Vigolo, and P. Launois, Carbon 40, 1741 (2002).
http://dx.doi.org/10.1016/S0008-6223(02)00042-8
445.
445.N. Neophytou, D. Kienle, E. Polizzi, and M. P. Anantram, Appl. Phys. Lett. 88, 242106 (2006).
http://dx.doi.org/10.1063/1.2211932
446.
446.M. P. Anantram and T. R. Govindan, Phys. Rev. B 58, 4882 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.4882
447.
447.H. -F. Song, J. -L. Zhu, and J. -J. Xiong, Phys. Rev. B 65, 085408 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.085408
448.
448.C. G. Rocha, T. G. Dargam, and A. Latge, Phys. Rev. B 65, 165431 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165431
449.
449.T. Kostyrko, M. Bartkowiak, and G. D. Mahan, Phys. Rev. B 60, 10735 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.10735
450.
450.H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 84, 2917 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2917
451.
451.L. Chico, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B 54, 2600 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.2600
452.
452.A. Tolvanen, G. Buchs, P. Ruffieux, P. Groening, O. Groening, and A. V. Krasheninnikov, Phys. Rev. B 79, 125430 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.125430
453.
453.G. Buchs, A. V. Krasheninnikov, P. Ruffieux, P. Gröning, A. S. Foster, R. M. Nieminen, and O. Gröning, New J. Phys. 9, 275 (2007).
http://dx.doi.org/10.1088/1367-2630/9/8/275
454.
454.A. Högele, C. Galland, M. Winger, and A. Imamoglu, Phys. Rev. Lett. 100, 217401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.217401
455.
455.V. Skákalová, A. B. Kaiser, U. Dettlaff, K. Arstila, A. V. Krasheninnikov, J. Keinonen, and S. Roth, Phys. Status Solidi C 245, 2280 (2008).
http://dx.doi.org/10.1002/pssb.200879631
456.
456.A. Ishaq, L. Yan, and D. Zhu, Nucl. Instrum. Methods Phys. Res. B 267, 1779 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.02.061
457.
457.Y. Kopelevich, P. Esquinazi, J. Torres, and S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000).
http://dx.doi.org/10.1023/A:1004637814008
458.
458.A. V. Rode, E. G. Gamaly, A. G. Christy, J. G. Fitz Gerald, S. T. Hyde, R. G. Elliman, B. Luther-Davies, A. I. Veinger, J. Androulakis, and J. Giapintzakis, Phys. Rev. B 70, 054407 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.054407
459.
459.A. W. Mombrú, H. Pardo, R. Faccio, O. F. de Lima, E. R. Leite, G. Z. To, A. J. C. Lanfredi, C. A. Cardoso, and F. M. Araújo-Moreira, Phys. Rev. B 71, 100404 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.100404
460.
460.J. Barzola-Quiquia, P. Esquinazi, M. Rothermel, D. Spemann, T. Butz, and N. Garcia, Phys. Rev. B 76, 161403 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.161403
461.
461.Carbon Based Magnetism, edited by T. Makarova and F. Palacio (Elsevier, Amsterdam, 2006).
462.
462.R. Sielemann, Y. Kobayashi, Y. Yoshida, H. P. Gunnlaugsson, and G. Weyer, Phys. Rev. Lett. 101, 137206 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.137206
463.
463.M. P. López-Sancho, F. de Juan, and M. A. H. Vozmediano, Phys. Rev. B 79, 075413 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075413
464.
464.A. N. Andriotis, M. Menon, R. M. Sheetz, and L. Chernozatonskii, Phys. Rev. Lett. 90, 026801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.026801
465.
465.J. A. Chan, B. Montanari, J. D. Gale, S. M. B. J. W. Taylor, and N. M. Harrison, Phys. Rev. B 70, 041403(R) (2004).
http://dx.doi.org/10.1103/PhysRevB.70.041403
466.
466.D. W. Boukhvalov and M. I. Katsnelson, Eur. Phys. J. B 68, 529 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00119-2
467.
467.O. V. Yazyev, Phys. Rev. Lett. 101, 037203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.037203
468.
468.L. Pisani, B. Montanari, and N. M. Harrison, New J. Phys. 10, 033002 (2008).
http://dx.doi.org/10.1088/1367-2630/10/3/033002
469.
469.H. Lee, Y. Miyamoto, and J. Yu, Phys. Rev. B 79, 121404 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.121404
470.
470.K. Kusakabe and M. Maruyama, Phys. Rev. B 67, 092406 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.092406
471.
471.Y. -H. Kim, J. Choi, K. J. Chang, and D. Tománek, Phys. Rev. B 68, 125420 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125420
472.
472.S. Okada and A. Oshiyama, J. Phys. Soc. Jpn. 72, 1510 (2003).
http://dx.doi.org/10.1143/JPSJ.72.1510
473.
473.K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17954
474.
474.J. Barzola-Quiquia, R. Hoehne, M. Rothermel, A. Setzer, P. Esquinazi, and V. Heera, Eur. Phys. J. B 61, 127 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00047-7
475.
475.Y. Zhang, S. Talapatra, S. Kar, R. Vajtai, S. K. Nayak, and P. M. Ajayan, Phys. Rev. Lett. 99, 107201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.107201
476.
476.H. Xia, W. Li, Y. Song, X. Yang, X. Liu, M. Zhao, Y. Xia, C. Song, T. -W. Wang, D. Zhu, J. Gong, and Z. Zhu, Adv. Mater. 20, 4679 (2008).
http://dx.doi.org/10.1002/adma.200801205
477.
477.N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science 269, 966 (1995).
http://dx.doi.org/10.1126/science.269.5226.966
478.
478.D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, and H. Yusa, Appl. Phys. Lett. 69, 2045 (1996).
http://dx.doi.org/10.1063/1.116874
479.
479.D. Pacilé, J. C. Meyer, Ç. Ö. Girit, and A. Zettl, Appl. Phys. Lett. 92, 133107 (2008).
http://dx.doi.org/10.1063/1.2903702
480.
480.N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Gannett, and A. Zettl, Phys. Rev. B 80, 155425 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.155425
481.
481.D. Golberg, Y. Bando, C. Tang, and C. Zhi, Adv. Mater. 19, 2413 (2007).
http://dx.doi.org/10.1002/adma.200700179
482.
482.J. Ullmann, J. E. E. Baglin, and A. J. Kellock, J. Appl. Phys. 83, 2980 (1998).
http://dx.doi.org/10.1063/1.367053
483.
483.I. Jiménez, A. F. Jankowski, L. J. Terminello, D. G. J. Sutherland, J. A. Carlisle, G. L. Doll, W. M. Tong, D. K. Shuh, and F. J. Himpsel, Phys. Rev. B 55, 12025 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.12025
484.
484.S. Eyhusen, I. Gerhards, H. Hofsäss, C. Ronning, M. Blomenhofer, J. Zweck, and M. Seibt, Diamond Relat. Mater. 12, 1877 (2003).
http://dx.doi.org/10.1016/S0925-9635(03)00210-3
485.
485.E. Bengu, L. D. Marks, R. V. Ovali, and O. Gulseren, Ultramicroscopy 108, 1484 (2008).
http://dx.doi.org/10.1016/j.ultramic.2008.04.097
486.
486.D. Golberg, private communication.
487.
487.D. Goldberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, T. Tamiya, and H. Yusa, Chem. Phys. Lett. 279, 191 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00962-7
488.
488.D. Golberg, Y. Bando, W. Han, L. Bourgeois, K. Kurashima, and T. Sato, Mater. Res. Soc. Symp. Proc. 593, 27 (2000).
489.
489.A. Celik-Aktas, J. F. Stubbins, and J. Zuo, J. Appl. Phys. 102, 024310 (2007).
http://dx.doi.org/10.1063/1.2757007
490.
490.C. Jin, F. Lin, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 195505 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.195505
491.
491.J. C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, and U. Kaiser, Nano Lett. 9, 2683 (2009).
http://dx.doi.org/10.1021/nl9011497
492.
492.O. Lehtinen, T. Nikitin, A. V. Krasheninnikov, L. Sun, L. Khriachtchev, F. Banhart, T. Terao, D. Golberg, and J. Keinonen, Phys. Status Solidi C 7 (2010).
http://dx.doi.org/10.1002/pssc.200982956
493.
493.H. F. Bettinger, T. Dumitric, G. E. Scuseria, and B. I. Yakobson, Phys. Rev. B 65, 041406 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.041406
494.
494.G. Y. Gou, B. C. Pan, and L. Shi, Phys. Rev. B 76, 155414 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155414
495.
495.S. Azevedo, J. R. Kaschny, C. M. C. de Castilho, and F. de Brito Mota, Nanotechnology 18, 495707 (2007).
http://dx.doi.org/10.1088/0957-4484/18/49/495707
496.
496.S. Azevedo, J. R. Kaschny, C. M. C. de Castilho, and F. de Brito Mota, Eur. Phys. J. B 67, 507 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00043-5
497.
497.A. Zobelli, C. Ewels, A. Gloter, G. Seifert, O. Stephan, S. Csillag, and C. Colliex, Nano Lett. 6, 1955 (2006).
http://dx.doi.org/10.1021/nl061081l
498.
498.W. Orellana and H. Chacham, Phys. Rev. B 63, 125205 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.125205
499.
499.A. Zobelli, A. Gloter, C. P. Ewels, and C. Colliex, Phys. Rev. B 77, 045410 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045410
500.
500.A. Zobelli, C. P. Ewels, A. Gloter, and G. Seifert, Phys. Rev. B 75, 094104 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094104
501.
501.T. M. Schmidt, R. J. Baierle, P. Piquini, and A. Fazzio, Phys. Rev. B 67, 113407 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.113407
502.
502.R. -F. Liu and C. Cheng, Phys. Rev. B 76, 014405 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.014405
503.
503.M. S. Si and D. S. Xue, Phys. Rev. B 75, 193409 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.193409
504.
504.Y. F. Zhukovskii, S. Bellucci, S. Piskunov, L. Trinkler, and B. Berzina, Eur. Phys. J. B 67, 519 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00038-2
505.
505.M. Topsakal, E. Aktürk, and S. Ciraci, Phys. Rev. B 79, 115442 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115442
506.
506.Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, and D. Tománek, Phys. Rev. B 69, 121413(R) (2004).
http://dx.doi.org/10.1103/PhysRevB.69.121413
507.
507.S. Okada, Phys. Rev. B 80, 161404 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.161404
508.
508.O. Stéphan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya, and T. Sato, Appl. Phys. A: Mater. Sci. Process. 67, 107 (1998).
http://dx.doi.org/10.1007/s003390050745
509.
509.Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003).
http://dx.doi.org/10.1002/adma.200390087
510.
510.D. Sood, P. Sekhar, and S. Bhansali, Appl. Phys. Lett. 88, 143110 (2006).
http://dx.doi.org/10.1063/1.2192148
511.
511.R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
512.
512.J. Ahopelto, M. Sopanen, H. Lipsanen, S. Lourdudoss, E. R. Messmer, E. Höfling, J. P. Reithmaier, A. Forchel, A. Petersson, and L. Samuelsson, Appl. Phys. Lett. 70, 2828 (1997).
http://dx.doi.org/10.1063/1.119015
513.
513.C. D’Orléans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, Phys. Rev. B 67, 220101 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.220101
514.
514.T. Muller, K. H. Heinig, and B. Schmidt, Mater. Sci. Eng., C 19, 209 (2002).
http://dx.doi.org/10.1016/S0928-4931(01)00465-9
515.
515.V. A. Nebol’sin and A. A. Shchetinin, Inorg. Mater. 39, 899 (2003).
http://dx.doi.org/10.1023/A:1025588601262
516.
516.D. Bell, Y. Wu, C. Barrelet, S. Gradecak, J. Xiang, B. Timko, and C. Lieber, Microsc. Res. Tech. 64, 373 (2004).
http://dx.doi.org/10.1002/jemt.20093
517.
517.Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, Mater. Lett. 62, 1010 (2008).
http://dx.doi.org/10.1016/j.matlet.2007.07.034
518.
518.C. B. Duke, Chem. Rev. (Washington, D.C.) 96, 1237 (1996).
http://dx.doi.org/10.1021/cr950212s
519.
519.C. H. Grein, J. Cryst. Growth 180, 54 (1997).
http://dx.doi.org/10.1016/S0022-0248(97)00199-1
520.
520.C. Fulk, S. Sivananthan, D. Zavitz, R. Singh, M. Trenary, Y. P. Chen, G. Brill, and N. Dhar, J. Electron. Mater. 35, 1449 (2006).
http://dx.doi.org/10.1007/s11664-006-0282-y
521.
521.E. Holmström, A. V. Krasheninnikov, and K. Nordlund, in Ion Beams and Nano-Engineering, edited by D. Ila, J. K. N. Lindner, P. K. Chu, J. Baglin, and N. Kishimoto (MRS, Warrendale, 2009).
522.
522.S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, and R. E. Dunin-Borkowski, J. Appl. Phys. 94, 6005 (2003).
http://dx.doi.org/10.1063/1.1614432
523.
523.E. de Vasconcelos, F. dos Santos, E. da Silva, and H. Boudinov, Appl. Surf. Sci. 252, 5572 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.12.140
524.
524.S. -Y. Lee, C. -O. Jang, J. -H. Hyung, D. -J. Kim, T. -H. Kim, S. -K. Lee, S. -M. Koo, and M. -D. Kim, J. Korean Phys. Soc. 55, 28 (2009).
http://dx.doi.org/10.3938/jkps.55.28
525.
525.J. Li, K. J. V. Vilet, T. Zhu, S. Yip, and S. Suresh, Nature (London) 418, 307 (2002).
http://dx.doi.org/10.1038/nature00865
526.
526.S. Hoffmann, J. Bauer, C. Ronning, T. Stelzner, J. Michler, C. Ballif, V. Sivakov, and S. H. Christiansen, Nano Lett. 9, 1341 (2009).
http://dx.doi.org/10.1021/nl802977m
527.
527.R. G. Elliman, A. R. Wilkinson, T. Kim, P. Sekhar, and S. Bhansali, Nucl. Instrum. Methods Phys. Res. B 266, 1362 (2008).
http://dx.doi.org/10.1016/j.nimb.2007.11.036
528.
528.P. K. Sekhar, A. R. Wilkinson, R. G. Elliman, T. -H. Kim, and S. Bhansali, J. Phys. Chem. C 112, 20109 (2008).
http://dx.doi.org/10.1021/jp808462j
529.
529.S. Dhara, A. Datta, C. Wu, Z. Lan, K. Chen, Y. Wang, Y. Chen, C. Hsu, L. Chen, H. Lin, and C. C. Chen, Appl. Phys. Lett. 84, 3486 (2004).
http://dx.doi.org/10.1063/1.1738172
530.
530.V. M. Ayres, B. W. Jacobs, M. E. Englund, E. H. Carey, M. A. Crimp, R. M. Ronningen, A. F. Zeller, J. B. Halpern, M. Q. He, G. L. Harris, D. Liu, H. C. Shaw, and M. P. Petkov, Diamond Relat. Mater. 15, 1117 (2006).
http://dx.doi.org/10.1016/j.diamond.2005.11.055
531.
531.D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2552
532.
532.Y. V. Gorelkinskii and G. D. Watkins, Phys. Rev. B 69, 115212 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115212
533.
533.C. Coskun, D. C. Look, G. C. Farlow, and J. R. Sizelove, Semicond. Sci. Technol. 19, 752 (2004).
http://dx.doi.org/10.1088/0268-1242/19/6/016
534.
534.K. Lorenz, E. Alves, E. Wendler, O. Bilani, W. Wesch, and M. Hayes, Appl. Phys. Lett. 87, 191904 (2005).
http://dx.doi.org/10.1063/1.2126137
535.
535.D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. Zhang, and K. Nordlund, Phys. Rev. Lett. 95, 225502 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.225502
536.
536.W. -K. Hong, S. -S. Kwon, G. Jo, S. Song, B. S. Choi, and T. Lee, J. Korean Phys. Soc. 52, 848 (2008).
http://dx.doi.org/10.3938/jkps.52.848
537.
537.L. Liao, Z. Zhang, Y. Yang, B. Yan, H. T. Cao, L. L. Chen, G. P. Li, T. Wu, Z. X. Shen, B. K. Tay, T. Yu, and X. W. Sun, J. Appl. Phys. 104, 076104 (2008).
http://dx.doi.org/10.1063/1.2981189
538.
538.R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297, 787 (2002).
http://dx.doi.org/10.1126/science.1060928
539.
539.X. W. Sun, B. Ling, J. L. Zhao, S. T. Tan, Y. Yang, Y. Q. Shen, Z. L. Dong, and X. C. Li, Appl. Phys. Lett. 95, 133124 (2009).
http://dx.doi.org/10.1063/1.3243453
540.
540.S. Ju, K. Lee, D. B. Janes, R. C. Dwivedi, H. Baffour-Awuah, R. Wilkins, M. -H. Yoon, A. Facchetti, and T. J. Mark, Appl. Phys. Lett. 89, 073510 (2006).
http://dx.doi.org/10.1063/1.2336744
541.
541.J. Wang, M. J. Zhou, S. K. Hark, Q. Li, D. Tang, M. W. Chu, and C. H. Chen, Appl. Phys. Lett. 89, 221917 (2006).
http://dx.doi.org/10.1063/1.2399340
542.
542.H. Liu, G. -A. Cheng, C. Liang, and R. Zheng, Nanotechnology 19, 245606 (2008).
http://dx.doi.org/10.1088/0957-4484/19/24/245606
543.
543.S. Tsukuda, M. Sugimoto, S. Tagawa, and S. -I. Tanaka, J. Ceram. Proc. Res. 9, 466 (2008).
544.
544.Y. Kondo and K. Takayanagi, Phys. Rev. Lett. 79, 3455 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3455
545.
545.S. Xu, M. Tian, J. Wang, H. Xu, J. Redwing, and M. Chan, Small 1, 1221 (2005).
http://dx.doi.org/10.1002/smll.200500240
546.
546.J. Hu, Q. Li, J. Zhan, Y. Jiao, Z. Liu, S. P. Ringer, Y. Bando, and D. Golberg, ACS Nano 2, 107 (2008).
http://dx.doi.org/10.1021/nn700285d
547.
547.J. Zhan, Y. Bando, J. Hu, and D. Golberg, Appl. Phys. Lett. 89, 243111 (2006).
http://dx.doi.org/10.1063/1.2404950
548.
548.D. Weissenberger, D. Gerthsen, A. Reiser, G. M. Prinz, M. Feneberg, K. Thonke, H. Zhou, J. Sartor, J. Fallert, C. Klingshirn, and H. Kalt, Appl. Phys. Lett. 94, 042107 (2009).
http://dx.doi.org/10.1063/1.3075849
549.
549.M. Takeguchi, M. Shimojo, M. Tanaka, R. Che, W. Zhang, and K. Furuya, Surf. Interface Anal. 38, 1628 (2006).
http://dx.doi.org/10.1002/sia.2403
550.
550.C. Lai, J. Dai, X. Zhang, H. Chan, Y. Xu, Q. Li, and H. Ong, J. Cryst. Growth 282, 383 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.05.026
551.
551.Y. C. Choi, J. Kim, and S. D. Bu, J. Korean Phys. Soc. 51, 2045 (2007).
http://dx.doi.org/10.3938/jkps.51.2045
552.
552.J. Hu, Y. Bando, J. Zhan, and D. Golberg, Adv. Mater. 17, 1964 (2005).
http://dx.doi.org/10.1002/adma.200500317
553.
553.Y. K. Hong, D. H. Park, S. K. Park, and J. Joo, J. Korean Phys. Soc. 53, 2627 (2008).
http://dx.doi.org/10.3938/jkps.53.2627
554.
554.C. Akhmadaliev, B. Schmidt, and L. Bischoff, Appl. Phys. Lett. 89, 223129 (2006).
http://dx.doi.org/10.1063/1.2400068
555.
555.V. Pott and A. M. Ionescu, Microelectron. Eng. 83, 1718 (2006).
http://dx.doi.org/10.1016/j.mee.2006.01.116
556.
556.L. Bischoff, B. Schmidt, C. Akhmadaliev, and A. Mucklich, Microelectron. Eng. 83, 800 (2006).
http://dx.doi.org/10.1016/j.mee.2006.01.129
557.
557.S. K. Tripathi, N. Shukla, and V. N. Kulkarni, Nucl. Instrum. Methods Phys. Res. B 266, 1468 (2008).
http://dx.doi.org/10.1016/j.nimb.2007.12.071
558.
558.Z. -M. Liao, J. -B. Xu, X. -M. Sun, Y. -D. Li, J. Xu, and D. -P. Yu, Phys. Lett. A 373, 1181 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.01.050
559.
559.L. Bischoff, C. Akhmadaliev, and B. Schmidt, Microelectron. Eng. 84, 1459 (2007).
http://dx.doi.org/10.1016/j.mee.2007.01.226
560.
560.N. Chekurov, K. Grigoras, A. Peltonen, S. Franssila, and I. Tittonen, Nanotechnology 20, 065307 (2009).
http://dx.doi.org/10.1088/0957-4484/20/6/065307
561.
561.M. Savolainen, V. Touboltsev, P. Koppinen, K. -P. Riikonen, and K. Arutyunov, Appl. Phys. A: Mater. Sci. Process. 79, 1769 (2004).
http://dx.doi.org/10.1007/s00339-004-2709-8
562.
562.M. Zgirski, K. -P. Riikonen, V. Tuboltsev, P. Jalkanen, T. T. Hongisto, and K. Y. Arutyunov, Nanotechnology 19, 055301 (2008).
http://dx.doi.org/10.1088/0957-4484/19/05/055301
563.
563.V. Tuboltsev and J. Raisanen, Nanotechnology 20, 335302 (2009).
http://dx.doi.org/10.1088/0957-4484/20/33/335302
564.
564.M. Zgirski, K. -P. Riikonen, V. Touboltsev, and K. Y. Arutyunov, Phys. Rev. B 77, 054508 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.054508
565.
565.L. Rayleigh, Proc. R. Soc. London 29, 71 (1879).
http://dx.doi.org/10.1098/rspl.1879.0015
566.
566.C. Akhmadaliev, L. Bischoff, and B. Schmidt, Mater. Sci. Eng., C 26, 818 (2006).
http://dx.doi.org/10.1016/j.msec.2005.09.026
567.
567.T. Stelzner, G. Andra, F. Falk, E. Wendler, W. Wesch, R. Scholz, and S. Christiansen, Nucl. Instrum. Methods Phys. Res. B 257, 172 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.01.037
568.
568.A. Lugstein, C. Schoendorfer, M. Weil, C. Tomastik, A. Jauss, and E. Bertagnolli, Nucl. Instrum. Methods Phys. Res. B 255, 309 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.11.116
569.
569.Y. Ok, T. Seong, C. Choi, and K. Tu, Appl. Phys. Lett. 88, 043106 (2006).
http://dx.doi.org/10.1063/1.2167797
570.
570.J. B. Condon and T. Schober, J. Nucl. Mater. 207, 1 (1993).
http://dx.doi.org/10.1016/0022-3115(93)90244-S
571.
571.W. Jiang, W. Weber, C. Wang, J. Young, L. Boatner, J. Lian, L. Wang, and R. Ewing, Adv. Mater. 17, 1602 (2005).
http://dx.doi.org/10.1002/adma.200500118
572.
572.J. Chen and R. Konenkamp, Appl. Phys. Lett. 82, 4782 (2003).
http://dx.doi.org/10.1063/1.1587258
573.
573.S. Tsukuda, S. Seki, S. Tagawa, M. Sugimoto, A. Idesaki, S. Tanaka, and A. Oshima, J. Phys. Chem. B 108, 3407 (2004).
http://dx.doi.org/10.1021/jp037638s
574.
574.M. Lindeberg and K. Hjort, Sens. Actuators, A 105, 150 (2003).
http://dx.doi.org/10.1016/S0924-4247(03)00088-8
575.
575.D. Fink, P. Alegaonkar, A. Petrov, M. Wilhelm, P. Szimkowiak, A. Behar, D. Sinha, W. Fahrner, K. Hoppe, and L. Chadderton, Nucl. Instrum. Methods Phys. Res. B 236, 11 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.03.243
576.
576.M. Skupinski, M. Toulemonde, M. Lindeberg, and K. Hjort, Nucl. Instrum. Methods Phys. Res. B 240, 681 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.04.128
577.
577.F. Maurer, A. Dangwal, D. Lysenkov, G. Muller, M. Toimil-Molares, C. Trautmann, J. Brotz, and H. Fuess, Nucl. Instrum. Methods Phys. Res. B 245, 337 (2006).
http://dx.doi.org/10.1016/j.nimb.2005.11.124
578.
578.R. Sanz, M. Vazquez, K. R. Pirota, and M. Hernandez-Velez, J. Appl. Phys. 101, 114325 (2007).
http://dx.doi.org/10.1063/1.2745365
579.
579.A. Navitski, G. Müller, V. Sakharuk, T. W. Cornelius, C. Trautmann, and S. Karim, Eur. Phys. J.: Appl. Phys. 48, 30502 (2009).
http://dx.doi.org/10.1051/epjap/2009167
580.
580.C. Chien, L. Sun, M. Tanase, L. Bauer, A. Hultgren, D. Silevitch, G. Meyer, P. Searson, and D. Reich, J. Magn. Magn. Mater. 249, 146 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00523-1
581.
581.S. Seki, S. Tsukuda, K. Maeda, S. Tagawa, H. Shibata, M. Sugimoto, K. Jimbo, I. Hashitomi, and A. Kohyama, Macromolecules 38, 10164 (2005).
http://dx.doi.org/10.1021/ma051821x
582.
582.S. Tsukuda, S. Seki, M. Sugimoto, and S. Tagawa, Surf. Coat. Technol. 201, 8526 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2006.09.331
583.
583.J. Kang, J. Seo, K. Byun, and H. Hwang, Phys. Rev. B 66, 125405 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.125405
584.
584.J. Tersoff, Phys. Rev. B 38, 9902 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.9902
585.
585.F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.5262
586.
586.C. Moura and L. Amaral, Nucl. Instrum. Methods Phys. Res. B 228, 37 (2005).
http://dx.doi.org/10.1016/j.nimb.2004.10.019
587.
587.E. Holmström, A. V. Krasheninnikov, and K. Nordlund, Quantum and Classical Modecular Dynamics Studies of the Threshold Displacement Energy in Si Bulk and Nanowires, Proceedings of MRS Spring Meeting 2009, Paper No. 1181.
588.
588.E. E. Zhurkin, Surf. Invest. X-Ray Synchrotron Neutron Tech. 2, 193 (2008).
http://dx.doi.org/10.1134/S1027451008020067
589.
589.A. Marcus and N. Winograd, Anal. Chem. 78, 141 (2006).
http://dx.doi.org/10.1021/ac0513921
590.
590.T. T. Järvi, D. Pohl, K. Albe, B. Rellinghaus, L. Schultz, J. Fassbender, A. Kuronen, and K. Nordlund, EPL 85, 26001 (2009).
http://dx.doi.org/10.1209/0295-5075/85/26001
591.
591.Y. -P. Kim, E. Oh, H. K. Shon, D. W. Moon, T. G. Lee, and H. -S. Kim, Appl. Surf. Sci. 255, 1064 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.05.101
592.
592.W. Szymczak, N. Menzel, W. G. Kreyling, and K. Wittmaack, Int. J. Mass Spectrom. 254, 70 (2006).
http://dx.doi.org/10.1016/j.ijms.2006.05.010
593.
593.E. E. Zhurkin, Surf. Invest. X-Ray Synchrotron Neutron Tech. 3, 192 (2009).
http://dx.doi.org/10.1134/S1027451009020050
594.
594.R. Kissel and H. M. Urbassek, Nucl. Instr. Methods Phys. Res. B 180, 293 (2001).
http://dx.doi.org/10.1016/S0168-583X(01)00431-1
595.
595.S. Zimmermann and H. M. Urbassek, Int. J. Mass Spectrom. 272, 91 (2008).
http://dx.doi.org/10.1016/j.ijms.2008.01.004
596.
596.E. M. Bringa and R. E. Johnson, Nucl. Instrum. Methods Phys. Res. B 193, 365 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)00806-6
597.
597.E. M. Bringa and R. E. Johnson, Astrophys. J. 603, 159 (2004).
http://dx.doi.org/10.1086/381382
598.
598.R. E. Johnson and J. Schou, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 43, 403 (1993).
599.
599.I. Baranov, P. Håkansson, S. Kirillov, J. Kopniczky, A. Novikov, V. Obnorskii, A. Pchelintsev, A. P. Quist, G. Torzo, S. Yarmiychuk, and L. Zennaro, Nucl. Instrum. Methods Phys. Res. B 193, 798 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)00907-2
600.
600.I. Baranov, S. Kirillov, A. Novikov, V. Obnorskii, M. Toulemonde, K. Wien, S. Yarmiychuk, V. A. Borodin, and A. Volkov, Nucl. Instrum. Methods Phys. Res. B 230, 495 (2005).
http://dx.doi.org/10.1016/j.nimb.2004.12.090
601.
601.P. K. Kuiri, B. Joseph, H. P. Lenka, G. Sahu, J. Ghatak, D. Kanjilal, and D. P. Mahapatra, Phys. Rev. Lett. 100, 245501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.245501
602.
602.A. Klimmer, P. Ziemann, J. Biskupek, U. Kaiser, and M. Flesch, Phys. Rev. B 79, 155427 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155427
603.
603.C. Zimmermann, M. Yeadon, K. Nordlund, J. M. Gibson, R. S. Averback, U. Herr, and K. Samwer, Phys. Rev. B 64, 085419 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085419
604.
604.M. Ghaly and R. S. Averback, Phys. Rev. Lett. 72, 364 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.364
605.
605.A. Wucher and B. J. Garrison, J. Chem. Phys. 105, 5999 (1996).
http://dx.doi.org/10.1063/1.472451
606.
606.R. E. Birtcher, S. E. Donnelly, and S. Schlutig, Phys. Rev. Lett. 85, 4968 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.4968
607.
607.L. E. Rehn, R. C. Birtcher, S. E. Donnelly, P. M. Baldo, and L. Funk, Phys. Rev. Lett. 87, 207601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.207601
608.
608.K. O. E. Henriksson, K. Nordlund, and J. Keinonen, Phys. Rev. B 71, 014117 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014117
609.
609.J. Samela and K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 263, 375 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.06.017
610.
610.K. Nordlund and J. Samela, Nucl. Instrum. Methods Phys. Res. B 267, 1420 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.01.125
611.
611.M. O. Ruault, J. Chaumont, J. M. Penisson, and A. Bourret, Philos. Mag. A 50, 667 (1984).
http://dx.doi.org/10.1080/01418618408237526
612.
612.F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.371
613.
613.O. Dmitrieva, B. Rellinghaus, J. Kästner, M. O. Liedke, and J. Fassbender, J. Appl. Phys. 97, 10N112 (2005).
http://dx.doi.org/10.1063/1.1853211
614.
614.U. Wiedwald, A. Klimmer, B. Kern, L. Han, H. -G. Boyen, P. Ziemann, and K. Fauth, Appl. Phys. Lett. 90, 062508 (2007).
http://dx.doi.org/10.1063/1.2472177
615.
615.T. T. Järvi, A. Kuronen, K. Nordlund, and K. Albe, J. Appl. Phys. 102, 124304 (2007).
http://dx.doi.org/10.1063/1.2825045
616.
616.T. T. Järvi, A. Kuronen, K. Nordlund, and K. Albe, Phys. Rev. B 80, 132101 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.132101
617.
617.S. Talapatra, J. -Y. Cheng, N. Chakrapani, S. Trasobares, A. Cao, R. Vajtai, M. B. Huang, and P. M. Ajayan, Nanotechnology 17, 305 (2006).
http://dx.doi.org/10.1088/0957-4484/17/1/052
618.
618.K. Meinander and K. Nordlund, Phys. Rev. B 79, 045411 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.045411
619.
619.T. T. Järvi, A. Kuronen, K. Nordlund, and K. Albe, J. Appl. Phys. 106, 063516 (2009).
http://dx.doi.org/10.1063/1.3225910
620.
620.K. Meinander, Ph.D. thesis, University of Helsinki, Helsinki, Finland, 2009.
621.
621.D. Datta, S. Bhattacharyya, I. Shyjumon, D. Ghose, and R. Hippler, Surf. Coat. Technol. 203, 2452 (2009).
http://dx.doi.org/10.1016/j.surfcoat.2009.02.114
622.
622.C. P. Poole and F. J. Owens, Introduction to Nanotechnology (Wiley, New Jersey, 2003).
623.
623.S. Guha, A. Madhukar, and K. C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).
http://dx.doi.org/10.1063/1.103914
624.
624.P. J. Wellmann, W. V. Schoenfeld, J. M. Garcia, and P. M. Petroff, J. Electron. Mater. 27, 1030 (1998).
http://dx.doi.org/10.1007/s11664-998-0158-4
625.
625.W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, Appl. Phys. Lett. 83, 4300 (2003).
http://dx.doi.org/10.1063/1.1623324
626.
626.Z. Zaâboub, B. Ilahi, L. Sfaxi, H. Maaref, B. Salem, V. Aimez, and D. Morris, Nanotechnology 19, 285715 (2008).
http://dx.doi.org/10.1088/0957-4484/19/28/285715
627.
627.P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, Appl. Phys. Lett. 82, 2053 (2003).
http://dx.doi.org/10.1063/1.1561153
628.
628.S. Barik, H. H. Tan, and C. Jagadish, Nanotechnology 18, 175305 (2007).
http://dx.doi.org/10.1088/0957-4484/18/17/175305
629.
629.Q. Li, S. Barik, H. H. Tan, and C. Jagadish, J. Phys. D: Appl. Phys. 41, 205107 (2008).
http://dx.doi.org/10.1088/0022-3727/41/20/205107
630.
630.C. Dion, P. Desjardins, M. Chicoine, F. Schiettekatte, P. J. Poole, and S. Raymond, Nanotechnology 18, 015404 (2007).
http://dx.doi.org/10.1088/0957-4484/18/1/015404
631.
631.E. Bellini, A. Taurino, M. Catalano, M. Lomascolo, A. Passaseo, and L. Vasanelli, Nanotechnology 20, 255306 (2009).
http://dx.doi.org/10.1088/0957-4484/20/25/255306
632.
632.N. Venkatram, T. Reddeppa, R. Sathyavathi, U. M. Bhatta, P. V. Satyam, and D. N. Rao, Nucl. Instrum. Methods Phys. Res. B 266, 1816 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.01.026
633.
633.S. Chowdhury, D. Mohanta, G. Ahmed, S. Dolui, D. Avasthi, and A. Choudhury, J. Lumin. 114, 95 (2005).
http://dx.doi.org/10.1016/j.jlumin.2004.12.006
634.
634.K. H. Heinig, B. Schmidt, A. Markwitz, R. Grötzchel, M. Strobel, and S. Oswald, Nucl. Instrum. Methods Phys. Res. B 148, 969 (1999).
http://dx.doi.org/10.1016/S0168-583X(98)00862-3
635.
635.C. Bonafos, M. Carrada, N. Cherkashin, H. Coffin, D. Chassaing, G. B. Assayag, A. Claverie, T. Müller, K. H. Heinig, M. Perego, and M. Fanciulli, J. Appl. Phys. 95, 5696 (2004).
http://dx.doi.org/10.1063/1.1695594
636.
636.C. W. White, J. D. Budai, S. P. Withrow, J. G. Zhu, E. Sonder, R. A. Zuhr, A. Meldrum, D. M. Hembree, D. O. Henderson, and S. Prawer, Nucl. Instrum. Methods Phys. Res. B 141, 228 (1998).
http://dx.doi.org/10.1016/S0168-583X(98)00091-3
637.
637.P. G. Kik and A. Polman, J. Appl. Phys. 88, 1992 (2000).
http://dx.doi.org/10.1063/1.1305930
638.
638.K. -H. Heinig, B. Schmidt, M. Strobel, and H. Bernas, in Ion Beam Synthesis and Processing of Advanced Materials, edited by D. B. Poker, S. C. Moss, and K. -H. Heinig (MRS, Warrendale, 2000), Vol. 647.
639.
639.F. Ren, X. H. Xiao, G. X. Cai, J. B. Wang, and C. Z. Jiang, Appl. Phys. A: Mater. Sci. Process. 96, 317 (2009).
http://dx.doi.org/10.1007/s00339-009-5205-3
640.
640.K. Baba, T. Kaneko, and R. Hatakeyama, Appl. Phys. Express 2, 035006 (2009).
http://dx.doi.org/10.1143/APEX.2.035006
641.
641.L. Khriachtchev, S. Novikov, and O. Kilpelä, J. Appl. Phys. 87, 7805 (2000).
http://dx.doi.org/10.1063/1.373459
642.
642.L. Khriachtchev, M. Räsänen, and S. Novikov, Appl. Phys. Lett. 88, 013102 (2006).
http://dx.doi.org/10.1063/1.2161399
643.
643.I. V. Antonova, A. G. Cherkov, V. A. Skuratov, M. S. Kagan, J. Jedrzejewski, and I. Balberg, Nanotechnology 20, 185401 (2009).
http://dx.doi.org/10.1088/0957-4484/20/18/185401
644.
644.G. A. Kachurin, M. O. Ruault, A. K. Gutakovsky, O. Kaitasov, S. G. Yanovskaya, K. S. Zhuravlev, and H. Bernas, Nucl. Instrum. Methods Phys. Res. B 147, 356 (1999).
http://dx.doi.org/10.1016/S0168-583X(98)00586-2
645.
645.G. A. Kachurin, S. G. Yanovskaya, M. O. Ruault, A. K. Gutakovskii, K. S. Zhuravlev, O. Kaitasov, and H. Bernas, Semiconductors 34, 965 (2000).
http://dx.doi.org/10.1134/1.1188109
646.
646.S. Cheylan, N. Langford, and R. G. Elliman, Nucl. Instrum. Methods Phys. Res. B 166-167, 851 (2000).
http://dx.doi.org/10.1016/S0168-583X(99)00795-8
647.
647.D. Pacifici, E. C. Moreira, G. Franzo, V. Martorino, F. Priolo, and F. Iacona, Phys. Rev. B 65, 144109 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144109
648.
648.D. Pacifici, G. Franzo, F. Iacona, and F. Priolo, Physica E (Amsterdam) 16, 404 (2003).
http://dx.doi.org/10.1016/S1386-9477(02)00613-6
649.
649.D. I. Tetelbaum, S. A. Trushin, V. A. Burdov, A. I. Golovanov, D. G. Revin, and D. M. Gaponova, Nucl. Instrum. Methods Phys. Res. B 174, 123 (2001).
http://dx.doi.org/10.1016/S0168-583X(00)00457-2
650.
650.U. Serincan, M. Kulakci, R. Turan, S. Foss, and T. G. Finstad, Nucl. Instrum. Methods Phys. Res. B 254, 87 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.10.081
651.
651.M. C. Ridgway, G. M. Azevedo, R. G. Elliman, C. J. Glover, D. J. Llewellyn, R. Miller, W. Wesch, G. J. Foran, J. Hansen, and A. Nylandsted-Larsen, Phys. Rev. B 71, 094107 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.094107
652.
652.L. L. Araujo, R. Giulian, B. Johannessen, D. J. Llewellyn, P. Kluth, G. D. M. Azevedo, D. J. Cookson, G. J. Foran, and M. C. Ridgway, Nucl. Instrum. Methods Phys. Res. B 266, 3153 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.03.175
653.
653.M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, L. L. Araujo, and M. C. Ridgway, Phys. Rev. B 80, 144109 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.144109
654.
654.F. Djurabekova, M. Backman, O. H. Pakarinen, K. Nordlund, L. Araujo, and M. Ridgway, Nucl. Instrum. Methods Phys. Res. B 267, 1235 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.01.022
655.
655.F. Djurabekova and K. Nordlund, Phys. Rev. B 77, 115325 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115325
656.
656.A. Kanjilal, L. Rebohle, N. K. Baddela, S. Zhou, M. Voelskow, W. Skorupa, and M. Helm, Phys. Rev. B 79, 161302 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.161302
657.
657.P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, Phys. Rev. B 74, 014202 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.014202
658.
658.P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran,D. J. Cookson, A. P. Byrne, and M. C. Ridgway, Radiat. Eff. Defects Solids 162, 501 (2007).
http://dx.doi.org/10.1080/10420150701472221
659.
659.L. G. Jacobsohn, J. D. Thompson, Y. Wang, A. Misra, R. K. Schulze, and M. Nastasi, Nucl. Instrum. Methods Phys. Res. B 250, 201 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.04.110
660.
660.D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, K. Nordlund, and M. C. Ridgway, “Ion irradiation induced amorphization on cobalt nanoparticles,” Phys. Rev. B (submitted).
661.
661.D. J. Sprouster, R. Giulian, C. S. Schnohr, L. L. Araujo, P. Kluth, A. P. Byrne, G. J. Foran, B. Johannessen, and M. C. Ridgway, Phys. Rev. B 80, 115438 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.115438
662.
662.G. Rizza, A. Dunlop, and A. Dezellus, Nucl. Instrum. Methods Phys. Res. B 256, 219 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.12.012
663.
663.W. Ostwald, Z. Elektrochem. Angew. Phys. Chem. 22, 289 (1897).
664.
664.G. C. Rizza, M. Strobel, K. H. Heinig, and H. Bernas, Nucl. Instrum. Methods Phys. Res. B 178, 78 (2001).
http://dx.doi.org/10.1016/S0168-583X(01)00496-7
665.
665.G. Rizza, H. Cheverry, T. Gacoin, A. Lamas, and S. Henry, J. Appl. Phys. 101, 014321 (2007).
http://dx.doi.org/10.1063/1.2402351
666.
666.C. Dorleans, J. P. Stoquert, C. Estournes, J. J. Grob, D. Muller, J. L. Guille, M. Richard-Plouet, C. Cerruti, and F. Haas, Nucl. Instrum. Methods Phys. Res. B 216, 372 (2004).
http://dx.doi.org/10.1016/j.nimb.2003.11.063
667.
667.C. Cerruti, J. P. Stoquert, C. D’Orleans, C. Estournes, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, Nucl. Instrum. Methods Phys. Res. B 216, 329 (2004).
http://dx.doi.org/10.1016/j.nimb.2003.11.056
668.
668.A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, Phys. Rev. B 74, 245425 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.245425
669.
669.D. Mohanta, G. A. Ahmed, A. Choudhury, F. Singh, D. K. Avasthi, G. Boyer, and G. A. Stanciu, Eur. Phys. J.: Appl. Phys. 35, 29 (2006).
http://dx.doi.org/10.1051/epjap:2006073
670.
670.B. Joseph, J. Ghatak, H. P. Lenka, P. K. Kuiri, G. Sahu, N. C. Mishra, and D. P. Mahapatra, Nucl. Instrum. Methods Phys. Res. B 256, 659 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.12.183
671.
671.B. Schmidt, A. Muecklich, L. Roentzsch, and K. -H. Heinig, Nucl. Instrum. Methods Phys. Res. B 257, 30 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.12.152
672.
672.M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, Phys. Rev. B 76, 045424 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.045424
673.
673.R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, Phys. Rev. B 78, 125413 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125413
674.
674.P. Kluth, R. Giulian, D. J. Sprouster, C. S. Schnohr, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, Appl. Phys. Lett. 94, 113107 (2009).
http://dx.doi.org/10.1063/1.3099971
675.
675.F. Singh, S. Mohapatra, J. P. Stolquert, D. K. Avasthi, and J. C. Pivin, Nucl. Instrum. Methods Phys. Res. B 267, 936 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.02.026
676.
676.J. C. Pivin, F. Singh, Y. Mishra, D. K. Avasthi, and J. P. Stoquert, Surf. Coat. Technol. 203, 2432 (2009).
http://dx.doi.org/10.1016/j.surfcoat.2009.02.033
677.
677.K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, Phys. Rev. B 78, 054102 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.054102
678.
678.M. Shirai, K. Tsumori, M. Kutsuwada, K. Yasuda, and S. Matsumura, Nucl. Instrum. Methods Phys. Res. B 267, 1787 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.03.079
679.
679.M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, Nucl. Instrum. Methods Phys. Res. B 267, 931 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.02.025
680.
680.B. Schmidt, K. -H. Heinig, A. Mucklich, and C. Akhmadaliev, Nucl. Instrum. Methods Phys. Res. B 267, 1345 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.01.062
681.
681.P. L. McEuen, Nature (London) 393, 15 (1998).
http://dx.doi.org/10.1038/29874
682.
682.Wikipedia, the free encyclopedia, http://en.wikipedia.org/.
http://aip.metastore.ingenta.com/content/aip/journal/jap/107/7/10.1063/1.3318261
Loading
/content/aip/journal/jap/107/7/10.1063/1.3318261
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/107/7/10.1063/1.3318261
2010-04-06
2016-08-25

Abstract

A common misconception is that the irradiation of solids with energetic electrons and ions has exclusively detrimental effects on the properties of target materials. In addition to the well-known cases of doping of bulk semiconductors and ion beam nitriding of steels, recent experiments show that irradiation can also have beneficial effects on nanostructured systems. Electron or ion beams may serve as tools to synthesize nanoclusters and nanowires, change their morphology in a controllable manner, and tailor their mechanical, electronic, and even magnetic properties. Harnessing irradiation as a tool for modifying material properties at the nanoscale requires having the full microscopic picture of defect production and annealing in nanotargets. In this article, we review recent progress in the understanding of effects of irradiation on various zero-dimensional and one-dimensional nanoscale systems, such as semiconductor and metal nanoclusters and nanowires, nanotubes, and fullerenes. We also consider the two-dimensional nanosystemgraphene due to its similarity with carbon nanotubes. We dwell on both theoretical and experimental results and discuss at length not only the physics behind irradiationeffects in nanostructures but also the technical applicability of irradiation for the engineering of nanosystems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/107/7/1.3318261.html;jsessionid=2d_UkLFEqsHtY7sjOorl8oKn.x-aip-live-06?itemId=/content/aip/journal/jap/107/7/10.1063/1.3318261&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/107/7/10.1063/1.3318261&pageURL=http://scitation.aip.org/content/aip/journal/jap/107/7/10.1063/1.3318261'
Right1,Right2,Right3,