1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Electric-field control of strain-mediated magnetoelectric random access memory
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/107/9/10.1063/1.3373593
1.
1.G. A. Prinz, Science 283, 330 (1999).
2.
2.S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerrera, IEEE Trans. Magn. 35, 2814 (1999).
http://dx.doi.org/10.1109/20.800991
3.
3.S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, and H. Ohno, IEEE Trans. Electron Devices 54, 991 (2007).
http://dx.doi.org/10.1109/TED.2007.894617
4.
4.J. -G. Zhu, Proc. IEEE 96, 1786 (2008).
http://dx.doi.org/10.1109/JPROC.2008.2004313
5.
5.M. Julliere, Phys. Lett. A 54, 225 (1975).
http://dx.doi.org/10.1016/0375-9601(75)90174-7
6.
6.W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
7.
7.J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
8.
8.M. Bibes and A. Barthélémy, Nature Mater. 7, 425 (2008).
http://dx.doi.org/10.1038/nmat2189
9.
9.X. Chen, A. Hochstrat, P. Borisov, and W. Kleemann, Appl. Phys. Lett. 89, 202508 (2006).
http://dx.doi.org/10.1063/1.2388149
10.
10.Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Nature Mater. 7, 478 (2008).
http://dx.doi.org/10.1038/nmat2184
11.
11.P. Borisov, A. Hochstrat, X. Chen, W. Kleemann, and C. Binek, Phys. Rev. Lett. 94, 117203 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.117203
12.
12.N. Mathur, Nature (London) 455, E13 (2008).
http://dx.doi.org/10.1038/nature07437
13.
13.N. A. Pertsev and H. Kohlstedt, Appl. Phys. Lett. 95, 163503 (2009).
14.
14.C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
http://dx.doi.org/10.1063/1.2836410
15.
15.J. M. Hu and C. W. Nan, Phys. Rev. B 80, 224416 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.224416
16.
16.M. Weiler, A. Brandlmaier, S. Geprägs, M. Althammer, M. Opel, C. Bihler, H. Huebl, M. S. Brandt, R. Gross, and S. T. B. Goennenwein, New J. Phys. 11, 013021 (2009).
http://dx.doi.org/10.1088/1367-2630/11/1/013021
17.
17.A. Brandlmaier, S. Geprägs, M. Weiler, A. Boger, M. Opel, H. Hubel, M. S. Brandt, R. Gross, and S. T. B. Goennenwein, Phys. Rev. B 77, 104445 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104445
18.
18.The hard layer is usually pinned as a part of a trilayer known as synthetic antiferromagnet (SAF) that is free of stray magnetic field in conventional MTJ-based MRAMs (Ref. 4), however in the present SME-RAM device, the SAF trilayer is not necessary since there is no external magnetic field applied during the reading process. Instead, an individual magnetic layer in which the magnetization vector is more difficult to rotate upon the electric field is used, as compared to that in the free layer.
19.
19.W. H. Wang, H. Sukegawa, R. Shan, S. Mitani, and K. Inomata, Appl. Phys. Lett. 95, 182502 (2009).
http://dx.doi.org/10.1063/1.3258069
20.
20.Suppose the transverse electric field is not high enough to induce an out-of-plane switching of the spontaneous magnetization. Hence, the direction cosine is considered to be zero herein (Ref. 15).
21.
21.The exchange coupling in a MTJ unit is usually weaker than that in a spin-valve structure based on the GMR effect due to the utilization of an insulating oxide barrier rather than a nonmagnetic metal layer. Accordingly, a relative small anisotropy energy value is assumed for the present calculations.
22.
22.S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).
http://dx.doi.org/10.1063/1.365983
23.
23.G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).
24.
24.Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature (London) 432, 84 (2004).
http://dx.doi.org/10.1038/nature03028
25.
25.R. C. Hall, J. Appl. Phys. 31, S157 (1960).
http://dx.doi.org/10.1063/1.1984643
26.
26.D. Sander, Rep. Prog. Phys. 62, 809 (1999).
http://dx.doi.org/10.1088/0034-4885/62/5/204
27.
27.B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd ed. (Wiley, Hoboken, New Jersey, 2009).
28.
28.Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein, New Series, Group III, Vol. 12, Pt. B, edited by K. -H. Hellwege and A. M. Hellwege, (Springer-Verlag, Berlin, 1980).
29.
29.R. C. O’Handley, Modern Magnetic Materials—Principle and Applications (Wiley, New York, 2000).
30.
30.Note the spontaneous orientation in the free layer may orient along the [110] direction, i.e., , if not pinned by the upper hard layer (Ref. 15).
31.
31.E. Girgis, J. Schelten, J. Shi, J. Janesky, S. Tehrani, and H. Goronkin, Appl. Phys. Lett. 76, 3780 (2000).
http://dx.doi.org/10.1063/1.126779
32.
32.T. Nozaki, Y. Jiang, H. Sukegawa, N. Tezuka, A. Hirohata, K. Inomata, and S. Sugimoto, J. Appl. Phys. 95, 3745 (2004).
http://dx.doi.org/10.1063/1.1669053
33.
33.D. Lebeugle, A. Mougin, M. Viret, D. Colson, and L. Ranno, Phys. Rev. Lett. 103, 257601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.257601
http://aip.metastore.ingenta.com/content/aip/journal/jap/107/9/10.1063/1.3373593
Loading
/content/aip/journal/jap/107/9/10.1063/1.3373593
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/107/9/10.1063/1.3373593
2010-05-06
2015-07-06

Abstract

A strain-mediated magnetoelectric random access memory with electric-field-writing is presented, which consists of a magnetic tunnel junction (MTJ) in intimate contact with a ferroelectric (FE) layer. The calculations show that the magnetization vector in the free layer of the MTJ unit can switch in-plane by 90° upon applying an appropriate electric field to the FE layer, as compared to the common 180° reversal induced by magnetic field or spin-current. A perfect interface between the FE layer and the MTJ is assumed. The free layers used for illustration include either (001)-oriented or polycrystalline magnetic films of Fe–Co alloy, (CFO), Ni, and . Among them, the (001)-oriented FeCo and CFO films with positive magnetocrystalline anisotropy constant (i.e., ) show an abrupt magnetization switching, while a gradual magnetization switching takes place in the (001)-oriented Ni and films with as well as the polycrystalline films. Such electric-field-induced in-plane magnetization switching can result in a remarkable change in the MTJ’s electric resistance. In particular, hysteretic dependence of the device resistance on the applied electric field is obtained for the cases of the (001)-oriented FeCo and CFO free layers that exhibit the abrupt magnetization switching, whereby a nonvolatile information storage process can be achieved. The influence of the shape of the free layer on both magnetization and resistance switching features is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/107/9/1.3373593.html;jsessionid=6pdo1aj96j73.x-aip-live-03?itemId=/content/aip/journal/jap/107/9/10.1063/1.3373593&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electric-field control of strain-mediated magnetoelectric random access memory
http://aip.metastore.ingenta.com/content/aip/journal/jap/107/9/10.1063/1.3373593
10.1063/1.3373593
SEARCH_EXPAND_ITEM