1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/107/9/10.1063/1.3407560
1.
1.C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (Wiley, New York, 2003).
2.
2.J. Duthie and D. G. Pettifor, Phys. Rev. Lett. 38, 564 (1977).
http://dx.doi.org/10.1103/PhysRevLett.38.564
3.
3.J. S. Gyanchandani, S. C. Gupta, S. K. Sikka, and R. Chidambaram, J. Phys.: Condens. Matter 2, 6457 (1990).
http://dx.doi.org/10.1088/0953-8984/2/30/011
4.
4.H. L. Skriver, Phys. Rev. B 31, 1909 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.1909
5.
5.Y. Akahama, H. Kawamura, and T. L. Bihan, Phys. Rev. Lett. 87, 275503 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.275503
6.
6.R. G. Hennig, T. J. Lenosky, D. R. Trinkle, S. P. Rudin, and J. W. Wilkins, Phys. Rev. B 78, 054121 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.054121
7.
7.K. D. Joshi, G. Jyoti, S. C. Gupta, and S. K. Sikka, Phys. Rev. B 65, 052106 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.052106
8.
8.Z. -G. Mei, S. -L. Shang, Y. Wang, and Z. -K. Liu, Phys. Rev. B 80, 104116 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.104116
9.
9.S. A. Ostanin and V. Y. Trubitsin, J. Phys.: Condens. Matter 9, L491 (1997).
http://dx.doi.org/10.1088/0953-8984/9/36/001
10.
10.S. Sikka, Y. Vohra, and R. Chidambaram, Prog. Mater. Sci. 27, 245 (1982).
http://dx.doi.org/10.1016/0079-6425(82)90002-0
11.
11.Y. K. Vohra and P. T. Spencer, Phys. Rev. Lett. 86, 3068 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3068
12.
12.D. A. Young, Phase Diagrams of the Elements (University of California Press, Berkeley, 1991).
13.
13.C. W. Greeff, D. R. Trinkle, and R. C. Albers, J. Appl. Phys. 90, 2221 (2001).
http://dx.doi.org/10.1063/1.1389334
14.
14.J. Zhang, Y. Zhao, R. S. Hixson, G. T. Gray III, L. Wang, W. Utsumi, S. Hiroyuki, and H. Takanori, J. Phys. Chem. Solids 69, 2559 (2008).
http://dx.doi.org/10.1016/j.jpcs.2008.05.016
15.
15.V. D. Blank and Y. S. Konyaev, Fiz. Met. Metalloved 53, 402 (1982).
16.
16.J. Zhang, Y. Zhao, R. S. Hixson, G. T. Gray, L. P. Wang, W. Utsumi, S. Hiroyuki, and H. Takanori, Phys. Rev. B 78, 054119 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.054119
17.
17.D. Errandonea, Y. Meng, M. Somayazulu, and D. Hausermann, Physica B 355, 116 (2005).
http://dx.doi.org/10.1016/j.physb.2004.10.030
18.
18.Y. J. Hao, L. Zhang, X. R. Chen, Y. H. Li, and H. L. He, Solid State Commun. 146, 105 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.012
19.
19.A. Kersch and D. Fischer, J. Appl. Phys. 106, 014105 (2009).
http://dx.doi.org/10.1063/1.3157212
20.
20.Q. Liu, C. Fan, and R. Zhang, J. Appl. Phys. 105, 123505 (2009).
http://dx.doi.org/10.1063/1.3151687
21.
21.Z. -Y. Zeng, C. -E. Hu, L. -C. Cai, X. -R. Chen, and F. -Q. Jing, J. Phys. Chem. B 114, 298 (2010).
http://dx.doi.org/10.1021/jp9073637
22.
22.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
23.
23.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
24.
24.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
25.
25.D. Alfè, Comput. Phys. Commun. 180, 2622 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.03.010
26.
26.M. A. Blanco, A. M. Pendás, E. Francisco, J. M. Recio, and R. Franco, J. Mol. Struct.: THEOCHEM 368, 245 (1996).
27.
27.M. Flórez, J. M. Recio, E. Francisco, M. A. Blanco, and A. M. Pendás, Phys. Rev. B 66, 144112 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.144112
28.
28.H. Ledbetter, H. Ogi, S. Kai, S. Kim, and M. Hirao, J. Appl. Phys. 95, 4642 (2004).
http://dx.doi.org/10.1063/1.1688445
29.
29.L. Fast, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 51, 17431 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.17431
30.
30.G. V. Sin'ko, Phys. Rev. B 77, 104118 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104118
31.
31.G. V. Sin'ko and N. A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002).
http://dx.doi.org/10.1088/0953-8984/14/29/301
32.
32.Y. -J. Hao, L. Zhang, X. -R. Chen, Y. -H. Li, and H. -L. He, J. Phys.: Condens. Matter 20, 235230 (2008).
http://dx.doi.org/10.1088/0953-8984/20/23/235230
33.
33.F. Birch, J. Geophys. Res. 91, 4949 (1986).
http://dx.doi.org/10.1029/JB091iB05p04949
34.
34.A. L. Kutepov and S. G. Kutepova, Phys. Rev. B 67, 132102 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.132102
35.
35.Z. -G. Mei, S. Shang, Y. Wang, and Z. -K. Liu, Phys. Rev. B 79, 134102 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.134102
36.
36.W. Liu, B. Li, L. Wang, J. Zhang, and Y. Zhao, Phys. Rev. B 76, 144107 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.144107
37.
37.Z. -Y. Zeng, Z. -L. Liu, X. -R. Chen, L. -C. Cai, and F. -Q. Jing, Chin. Phys. Lett. 25, 1757 (2008).
http://dx.doi.org/10.1088/0256-307X/25/5/064
38.
38.M. B. Weinberger, S. H. Tolbert, and A. Kavner, Phys. Rev. Lett. 100, 045506 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.045506
39.
39.G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (MIT Press, Cambridge, 1971).
40.
40.R. Hill, Proc. Phys. Soc. Lond. 65, 350 (1952).
41.
41.P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. M. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).
http://dx.doi.org/10.1063/1.368733
42.
42.C. Stassis, D. Arch, and B. N. Harmon, Phys. Rev. B 19, 181 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.181
43.
43.W. Petry, A. Heiming, J. Trampenau, M. Alba, C. Herzig, H. R. Schober, and G. Vogl, Phys. Rev. B 43, 10933 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.10933
44.
44.V. A. Zilbershtein, N. P. Chistotina, A. A. Zharov, N. A. Grishina, and E. I. Estrin, Fiz. Met. Metalloved. 39, 445 (1975).
45.
45.V. A. Zilbershteyn, G. I. Nosova, and E. I. Estrin, Fiz. Met. Metalloved 35, 584 (1973).
46.
46.H. Ogi, S. Kai, H. Ledbetter, R. Tarumi, M. Hirao, and K. Takashima, Acta Mater. 52, 2075 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.01.002
47.
47.X. Sha and R. E. Cohen, Phys. Rev. B 73, 104303 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.104303
48.
48.Z. -L. Liu, L. -C. Cai, X. -R. Chen, Q. Wu, and F. -Q. Jing, J. Phys.: Condens. Matter 21, 095408 (2009).
http://dx.doi.org/10.1088/0953-8984/21/9/095408
49.
49.E. S. Fisher and C. J. Renken, Phys. Rev. 135, A482 (1964).
http://dx.doi.org/10.1103/PhysRev.135.A482
50.
50.M. W. Chase, NIST-JANAF Thermochemical Tables (American Institute of Physics, Washington, DC, 1998).
http://aip.metastore.ingenta.com/content/aip/journal/jap/107/9/10.1063/1.3407560
Loading
/content/aip/journal/jap/107/9/10.1063/1.3407560
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/107/9/10.1063/1.3407560
2010-05-04
2015-07-05

Abstract

We report a detailed first-principles calculation to investigate the structures,elastic constants, and phase transition of Ti. The axial ratios of both and are nearly constant under hydrostatic compression, which confirms the latest experimental results. From the high pressureelastic constants, we find that the is unstable when the applied pressures are larger than 24.2 GPa, but the is mechanically stable at all range of calculated pressure. The calculated phonon dispersion curves agree well with experiments. Under compression, we captured a large softening around point of . When the pressure is raised to 35.9 GPa, the frequencies around the point along and in transverse acoustical branches become imaginary, indicating a structural instability. Within quasiharmonic approximation, we obtained the full phase diagram and accurate thermal equations of state of Ti. The phase transition at zero pressure occurs at 146 K and 1143 K, respectively. The predicted triple point is at 9.78 GPa, 931 K, which is close to the experimental data. Our thermal equations of state confirm the available experimental results and are extended to a wider pressure and temperature range.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/107/9/1.3407560.html;jsessionid=256trhk423mhh.x-aip-live-02?itemId=/content/aip/journal/jap/107/9/10.1063/1.3407560&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theoretical investigation of the high pressure structure, lattice dynamics, phase transition, and thermal equation of state of titanium metal
http://aip.metastore.ingenta.com/content/aip/journal/jap/107/9/10.1063/1.3407560
10.1063/1.3407560
SEARCH_EXPAND_ITEM