1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Universal conductance fluctuations and localization effects in InN nanowires connected in parallel
Rent:
Rent this article for
USD
10.1063/1.3516216
/content/aip/journal/jap/108/11/10.1063/1.3516216
http://aip.metastore.ingenta.com/content/aip/journal/jap/108/11/10.1063/1.3516216

Figures

Image of FIG. 1.
FIG. 1.

(a) Scanning electron beam micrograph of sample B-6 with six InN wires connected in parallel and (b) detail of a contacted InN nanowire. (c) Schematic illustration of a contacted nanowire. The Si substrate used as a back-gate electrode is isolated from the nanowire by a 100 nm thick layer.

Image of FIG. 2.
FIG. 2.

(a) Conductance fluctuations in units of for a single wire (sample A-1) at various temperatures in the range from 0.8 to 30 K. (b) Corresponding measurements for a sample with eight wires connected in parallel (sample A-8). (c) Comparison of the conductance fluctuations of samples A-1 and A-8 at 0.8 K. The curve of sample A-8 was shifted by 0.03.

Image of FIG. 3.
FIG. 3.

(a) Normalized average amplitude of the conductance fluctuations as a function of temperature for sample A-1 (green dots) and sample A-8 (red triangle), respectively. Also shown are the average fluctuation amplitude calculated using Eq. (2) (open symbols), with determined from the correlation field. The full lines show the fitted exponential decrease in . (b) Correlation field as a function of temperature of sample A-1 and A-8, respectively. (c) Phase-coherence length extracted from . The dashed line corresponds to the thermal length .

Image of FIG. 4.
FIG. 4.

Conductance fluctuations normalized to at various temperatures of 0.4, 3, 10, and 30 K for samples with different numbers of wires connected in parallel: (a) sample B-1, (b) B-6, (c) B-10, and (d) B-12. Color scale plot of the conductance fluctuations of sample B-10 as function of magnetic field and temperature. was determined by subtracting the slowly varying background conductance.

Image of FIG. 5.
FIG. 5.

(a) as a function of temperature for a single wire (sample B-1) as well as for six, ten, and 12 wires (samples B-6, B-10, and B-12) connected in parallel. The open symbols represent the calculated values for B-6 and B-10 using Eq. (2). The full lines show the fitted exponential decrease in . (b) as a function of for samples B-1, B-6, B-10, and B-12. The dashed line represents the thermal length . The inset shows the decrease in with increasing number of wires for below 1 K.

Image of FIG. 6.
FIG. 6.

Conductance of sample B-12 as a function of gate voltage for various temperatures.

Image of FIG. 7.
FIG. 7.

(a) Normalized conductance fluctuations averaged over as a function of temperature for a single wire (sample B-1) as well as for six, ten, and 12 wires (samples B-6, B-10, and B-12) connected in parallel. The open symbols represent the calculations using Eq. (2). The full lines show the exponential decrease of . (b) Respective phase-coherence length as a function of temperature. The dashed line represents the thermal length .

Image of FIG. 8.
FIG. 8.

(a) Magnetoconductance of sample A-8 at 0.8 K at a gate voltage of 0, 2, 4, 6, and 8 V, respectively. (b) Correction of the magnetoconductance of sample A-8 averaged over different gate voltages at 0.8 K, 1.0 K and 4.0 K, respectively. Here, the zero field conductance was subtracted from the total conductance.

Image of FIG. 9.
FIG. 9.

(a) and (b) Magnetoconductance of samples B-6, B-10, and B-12 after subtracting the zero field conductance at a temperature of 2 K and at 30 K, respectively. (c) vs of sample B-6 after averaging over different gate voltages. The full line shows the fit to the experimental data. (d) in units of of the gate voltage dependent fluctuations as a function of .

Tables

Generic image for table
Table I.

Sample dimensions and characteristic parameters: growth run, number of wires connected in parallel, average wire length , average wire diameter , total resistance at 1 K including the contact resistance.

Loading

Article metrics loading...

/content/aip/journal/jap/108/11/10.1063/1.3516216
2010-12-03
2014-04-17
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Universal conductance fluctuations and localization effects in InN nanowires connected in parallel
http://aip.metastore.ingenta.com/content/aip/journal/jap/108/11/10.1063/1.3516216
10.1063/1.3516216
SEARCH_EXPAND_ITEM