banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Magnetic thermodynamics of fcc Ni from first-principles partition function approach
Rent this article for


Image of FIG. 1.
FIG. 1.

supercell of fcc Ni (left), where the fcc cell is represented by the distorted bcc with . The arrows illustrate the collinear spin alignments of the eight-layer Ni atoms with spin up and spin down. str1 is the FMC, str2 is the nonmagnetic configuration (not shown), others are the spin-flipping configurations (SFCs: str3–str7).

Image of FIG. 2.
FIG. 2.

First-principles calculated total energies and the projected magnetic moments as a function of volume for str6 (see Fig. 1), the EOS [see Eq. (7)] fitted energy vs volume curve is also shown.

Image of FIG. 3.
FIG. 3.

Predicted energies for all possible spin-up and spin-down configurations within the supercell of fcc Ni (see Fig. 1) by CEM (Ref. 14) (circles) with inputs from first-principles calculated relative energies (plus symbols, see Table I). Note that (i) the effective cluster interactions up to the second nearest pair are employed in CEM; (ii) the CEM predicted energies of high concentrations are not shown due to the symmetric energies, and (iii) the “1–7” structure [1 spin up (down) and 7 spin down (up) Ni atoms] is unstable according to first-principles calculations.

Image of FIG. 4.
FIG. 4.

Experimental (Ref. 25) (open circles) and predicted (curves) heat capacities at constant pressure (pressure ) by PFA and MFA for fcc Ni. The magnetic configurational entropy contribution is obtained by partition function due to the competition among magnetic states. A protrusion is clearly predicted with the maximum of 594 K (from ), pertaining to the Curie temperature and closing to the measured 625 K (Ref. 25).

Image of FIG. 5.
FIG. 5.

Predicted thermal populations of FMC and SFCs for fcc Ni as a function of temperature and under pressure . The cross point of 706 K corresponds to another definition of Curie temperature and is comparable with the measured 625 K (Ref. 25). The structures (str1–str7) are illustrated in Fig. 1.

Image of FIG. 6.
FIG. 6.

Experimental (Ref. 30) (symbols) and calculated Curie temperatures ’s of fcc Ni as a function of pressure. The predictions are based on the maximum of (see Fig. 4) and the equal of thermal populations between FMC and the sum of SFCs (, see Fig. 5). The predicted forms a band to separate the FM and PM regions.


Generic image for table
Table I.

First-principles predicted equilibrium properties of the supercell for fcc Ni (see Fig. 1) using the four-parameter Birch–Murnaghan EOS [see Eq. (7)], including the equilibrium volume ( per eight atoms), bulk modulus (GPa), and its pressure derivative , the relative energy (eV per eight atoms) with respect to str1 (the FMC structure), and the multiplicity (degeneracy factor) for each structure.

Generic image for table
Table II.

Predicted Curie temperatures ’s of fcc Ni in terms of the MFA and the present PFA, where is magnetic exchange energy used in MFA, see Eq. (8).


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Magnetic thermodynamics of fcc Ni from first-principles partition function approach