1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Dynamics of polarized photoluminescence in -plane InGaN/GaN quantum wells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/108/2/10.1063/1.3460278
1.
1.Y. J. Sun, O. Brandt, M. Ramsteiner, H. T. Grahn, and K. H. Ploog, Appl. Phys. Lett. 82, 3850 (2003).
http://dx.doi.org/10.1063/1.1579563
2.
2.N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, Appl. Phys. Lett. 86, 111101 (2005).
http://dx.doi.org/10.1063/1.1875765
3.
3.H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. DenBaars, J. Phys. D: Appl. Phys. 41, 225104 (2008).
http://dx.doi.org/10.1088/0022-3727/41/22/225104
4.
4.M. Kubota, K. Okamoto, T. Tanaka, and H. Ohta, Appl. Phys. Lett. 92, 011920 (2008).
http://dx.doi.org/10.1063/1.2824886
5.
5.N. Garro, A. Cros, J. A. Budagosky, A. Cantarero, A. Vinattieri, M. Gurioli, S. Founta, H. Mariett, and B. Daudin, Appl. Phys. Lett. 87, 011101 (2005).
http://dx.doi.org/10.1063/1.1977210
6.
6.C. Jia, T. Yu, S. Mu, Y. Pan, Z. Yang, Z. Den, Z. Qin, and G. Zhang, Appl. Phys. Lett. 90, 211112 (2007).
http://dx.doi.org/10.1063/1.2741607
7.
7.S. Marcinkevičius, A. Pinos, K. Liu, D. Veksler, M. S. Shur, J. Zhang, and R. Gaska, Appl. Phys. Lett. 90, 081914 (2007).
http://dx.doi.org/10.1063/1.2679864
8.
8.A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, E. Kuokštis, G. Tamulaitis, R. Gaska, J. Yang, and W. Sun, Appl. Phys. Lett. 92, 061907 (2008).
http://dx.doi.org/10.1063/1.2857467
9.
9.S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Phys. Rev. B 65, 075202 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.075202
10.
10.K. Saarinen, T. Suski, I. Grzegory, and D. C. Look, Phys. Rev. B 64, 233201 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.233201
11.
11.A. Pinos, S. Marcinkevičius, M. Usman, and A. Hallén, Appl. Phys. Lett. 95, 112108 (2009).
http://dx.doi.org/10.1063/1.3226108
12.
12.A. Hangleiter, D. Fuhrmann, M. Grewe, F. Hitzel, G. Klewer, S. Lahmann, C. Netzell, N. Riedel, and U. Rossow, Phys. Status Solidi A 201, 2808 (2004).
http://dx.doi.org/10.1002/pssa.200405051
13.
13.D. C. Look, Z. -Q. Fang, W. Kim, Ö. Aktas, A. Botchkarev, A. Salvador, and H. Morkoç, Appl. Phys. Lett. 68, 3775 (1996).
http://dx.doi.org/10.1063/1.116613
14.
14.V. Liuolia, S. Marcinkevičius, A. Pinos, R. Gaska, and M. S. Shur, Appl. Phys. Lett. 95, 091910 (2009).
http://dx.doi.org/10.1063/1.3222972
15.
15.G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamura, Phys. Status Solidi C 6, S800 (2009).
http://dx.doi.org/10.1002/pssc.200880974
16.
16.Ü. Özgür and H. O. Everitt, Phys. Rev. B 67, 155308 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155308
17.
17.H. Wang, Y. Lu, C. Chen, C. Chi, S. Chin, and C. C. Yang, Opt. Express 13, 5245 (2005).
http://dx.doi.org/10.1364/OPEX.13.005245
18.
18.H. Wang, S. Lin, Y. Lu, Y. Cheng, C. C. Yang, and K. Ma, Appl. Phys. Lett. 85, 1371 (2004).
http://dx.doi.org/10.1063/1.1784033
19.
19.K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C. -F. Huang, Y. -C. Cheng, and C. C. Yang, Phys. Rev. B 71, 085306 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.085306
20.
20.C. Netzel, V. Hoffmann, T. Wernicke, A. Knauer, M. Weyers, M. Kneissl, and N. Szabo, J. Appl. Phys. 107, 033510 (2010).
http://dx.doi.org/10.1063/1.3294624
21.
21.K. Okamoto, A. Scherer, and Y. Kawakami, Appl. Phys. Lett. 87, 161104 (2005).
http://dx.doi.org/10.1063/1.2105999
22.
22.R. Aleksiejūnas, M. Sūdžius, V. Gudelis, T. Malinauskas, K. Jarašiūnas, Q. Fareed, R. Gaska, M. S. Shur, J. Zhang, J. Yang, E. Kuokštis, and M. A. Khan, Phys. Status Solidi C 0, 2686 (2003).
http://dx.doi.org/10.1002/pssc.200303261
23.
23.S. J. Rosner, G. Girolami, H. Marchand, P. T. Fini, J. P. Ibbetson, L. Zhao, S. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 74, 2035 (1999).
http://dx.doi.org/10.1063/1.123748
24.
24.Y. Kawakami, K. Nishizuka, D. Yamada, A. Kaneta, M. Funato, Y. Narukawa, and T. Mukai, Appl. Phys. Lett. 90, 261912 (2007).
http://dx.doi.org/10.1063/1.2748309
25.
25.J. Mickevičius, R. Aleksiejūnas, M. S. Shur, G. Tamulaitis, R. S. Q. Fareed, J. P. Zhang, R. Gaska, and M. A. Khan, Phys. Status Solidi A 202, 126 (2005).
http://dx.doi.org/10.1002/pssa.200406903
26.
26.K. Okamoto, J. Choi, Y. Kawakami, M. Terazimai, T. Mukai, and S. Fujita, Jpn. J. Appl. Phys., Part 1 43, 839 (2004).
http://dx.doi.org/10.1143/JJAP.43.839
27.
27.T. Kuroda, T. Yabushita, T. Kosuge, A. Tackeuchi, K. Taniguchi, T. Chinone, and N. Horio, Appl. Phys. Lett. 85, 3116 (2004).
http://dx.doi.org/10.1063/1.1806284
28.
28.C. Brimont, M. Gallart, O. Crégut, B. Hönerlage, and P. Gilliot, Phys. Rev. B 77, 125201 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125201
29.
29.T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, and D. Bimberg, Appl. Phys. Lett. 85, 1946 (2004).
http://dx.doi.org/10.1063/1.1790599
30.
30.J. Renard, B. Amstatt, C. Bougerol, E. Bellet-Amalric, B. Daudin, and B. Gayral, J. Appl. Phys. 104, 103528 (2008).
http://dx.doi.org/10.1063/1.3021286
31.
31.O. Marquardt, T. Hickel, and J. Neugebauer, J. Appl. Phys. 106, 083707 (2009).
http://dx.doi.org/10.1063/1.3246864
32.
32.R. Bardoux, T. Goulett, B. Gill, P. Lefebvre, T. Bretagnon, T. Taliercio, S. Rousset, and F. Semond, Phys. Rev. B 77, 235315 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235315
http://aip.metastore.ingenta.com/content/aip/journal/jap/108/2/10.1063/1.3460278
Loading
/content/aip/journal/jap/108/2/10.1063/1.3460278
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/108/2/10.1063/1.3460278
2010-07-16
2014-10-21

Abstract

Spectrally-, polarization-, and time-resolved photoluminescence (PL) experiments have been performed on 2.5 nm thick -plane single InGaN quantum wells. It has been found that PL decay is mainly determined by nonradiative recombination through several types of recombination centers, while PL rise is largely affected by exciton transfer into localization minima. Prolonged PL rise times and time-dependent spectral shift were used to study exciton transfer into the localization centers. Characteristic time of the exciton transfer is 80–100 ps at lower temperatures and about 50 ps at room temperature, which corresponds to the exciton diffusion length of 200–500 nm. Degree of PL linear polarization was found to decrease at a similar rate. Decreased PL polarization for the localized excitons suggests that the localization centers are related to areas with relaxed strain.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/108/2/1.3460278.html;jsessionid=1bv1rfkcn3kf3.x-aip-live-02?itemId=/content/aip/journal/jap/108/2/10.1063/1.3460278&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dynamics of polarized photoluminescence in m-plane InGaN/GaN quantum wells
http://aip.metastore.ingenta.com/content/aip/journal/jap/108/2/10.1063/1.3460278
10.1063/1.3460278
SEARCH_EXPAND_ITEM