1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/108/9/10.1063/1.3504193
1.
1.H. -J. Drouhin, C. Hermann, and G. Lampel, Phys. Rev. B 31, 3859 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.3859
2.
2.S. Pastuszka, D. Kratzmann, D. Schwalm, A. Wolf, and A. S. Terekhov, Appl. Phys. Lett. 71, 2967 (1997).
http://dx.doi.org/10.1063/1.120231
3.
3.Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, Appl. Phys. Lett. 92, 241107 (2008).
http://dx.doi.org/10.1063/1.2945276
4.
4.J. Wehmeijer and B. V. Geest, Nat. Photonics 4, 152 (2010).
http://dx.doi.org/10.1038/nphoton.2010.21
5.
5.O. F. Farsakoğlu, D. M. Zengin, and H. Kocabaş, Opt. Eng. 32, 1105 (1993).
http://dx.doi.org/10.1117/12.130264
6.
6.A. A. Narayanan, D. G. Fisher, L. P. Erickson, and G. D. O’Clock, J. Appl. Phys. 56, 1886 (1984).
http://dx.doi.org/10.1063/1.334172
7.
7.L. E. Bourree, D. R. Chasse, P. L. Stephan Thamban, and R. Glosser, Proc. SPIE 4796, 11 (2003).
http://dx.doi.org/10.1117/12.450887
8.
8.S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, Surf. Sci. 527, 41 (2003).
http://dx.doi.org/10.1016/S0039-6028(02)02568-2
9.
9.W. E. Spicer and A. Herrera-Gómez, Proc. SPIE 2022, 18 (1993).
http://dx.doi.org/10.1117/12.158575
10.
10.W. E. Spicer, Appl. Phys. 12, 115 (1977).
http://dx.doi.org/10.1007/BF00896137
11.
11.J. S. Escher, R. L. Bell, P. E. Gregory, S. B. Hyder, T. J. Maloney, and G. A. Antypas, IEEE Trans. Electron Devices 27, 1244 (1980).
http://dx.doi.org/10.1109/T-ED.1980.20015
12.
12.J. J. Zou and B. K. Chang, Opt. Eng. 45, 054001 (2006).
http://dx.doi.org/10.1117/1.2205171
13.
13.Y. J. Zhang, B. K. Chang, Z. Yang, J. Niu, and J. J. Zou, Chin. Phys. B 18, 4541 (2009).
http://dx.doi.org/10.1088/1674-1056/18/10/074
14.
14.J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, Appl. Opt. 48, 5445 (2009).
http://dx.doi.org/10.1364/AO.48.005445
15.
15.G. Vergara, L. J. Gómez, J. Capmany, and M. T. Montojo, Vacuum 48, 155 (1997).
http://dx.doi.org/10.1016/S0042-207X(96)00234-5
16.
16.G. A. Antypas, J. S. Escher, J. Edgecumbe, and R. S. Enck, Jr., J. Appl. Phys. 49, 4301 (1978).
http://dx.doi.org/10.1063/1.325322
17.
17.F. Proix, A. Akremi, and Z. T. Zhong, J. Phys. C 16, 5449 (1983).
http://dx.doi.org/10.1088/0022-3719/16/28/013
18.
18.B. J. Stocker, Surf. Sci. 47, 501 (1975).
http://dx.doi.org/10.1016/0039-6028(75)90197-1
19.
19.L. Liu, Y. J. Du, B. K. Chang, and Y. S. Qian, Appl. Opt. 45, 6094 (2006).
http://dx.doi.org/10.1364/AO.45.006094
20.
20.J. J. Zou, B. K. Chang, and Z. Yang, Acta Phys. Sin. 56, 2992 (2007).
21.
21.D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, J. Appl. Phys. 43, 3815 (1972).
http://dx.doi.org/10.1063/1.1661817
22.
22.C. Y. Su, W. E. Spicer, and I. Lindau, J. Appl. Phys. 54, 1413 (1983).
http://dx.doi.org/10.1063/1.332166
23.
23.L. W. James, G. A. Antypas, J. Edgecumbe, R. L. Moon, and R. L. Bell, J. Appl. Phys. 42, 4976 (1971).
http://dx.doi.org/10.1063/1.1659883
24.
24.B. Goldstein, Surf. Sci. 47, 143 (1975).
http://dx.doi.org/10.1016/0039-6028(75)90280-0
25.
25.V. V. Bakin, A. A. Pakhnevich, A. G. Zhuravlev, A. N. Shornikov, I. O. Akhundov, O. E. Tereshechenko, V. L. Alperovich, H. E. Scheibler, and A. S. Terekhov, e-J. Surf. Sci. Nanotechnol. 5, 80 (2007).
http://dx.doi.org/10.1380/ejssnt.2007.80
26.
26.O. E. Tereshchenko, V. S. Voronin, H. E. Scheibler, V. L. Alperovich, and A. S. Terekhov, Surf. Sci. 507–510, 51 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01174-3
27.
27.V. L. Alperovich, O. E. Tereshechenko, A. N. Litvinov, and A. S. Terekhov, Appl. Surf. Sci. 175–176, 175 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00058-7
28.
28.J. J. Zou, Z. Yang, J. L. Qiao, P. Gao, and B. K. Chang, Proc. SPIE 6782, 67822R (2007).
http://dx.doi.org/10.1117/12.745944
http://aip.metastore.ingenta.com/content/aip/journal/jap/108/9/10.1063/1.3504193
Loading
/content/aip/journal/jap/108/9/10.1063/1.3504193
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/108/9/10.1063/1.3504193
2010-11-04
2015-07-31

Abstract

In order to verify the actual effect of an exponential-doping structure on cathode performance, an exponential-doping structure has been applied to the preparation of the transmission-mode GaAs photocathode via molecular beam epitaxy technique. Compared with the uniform-doping photocathode, the activation and spectral response results show that the exponential-doping photocathode can achieve a higher photoemission capability. In addition, based on the revised uniform-doping and exponential-doping transmission-mode quantum yield equations, the cathode performance parameters such as electron average transport length and electron escape probability of the exponential-doping photocathode are obtained, which are greater than those of the uniform-doping one. The improvement in the cathode performance is attributed to the built-in electric field arising from this special doping structure, which effectively increases the electron transport efficiency and escape probability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/108/9/1.3504193.html;jsessionid=28lrrxtoap93h.x-aip-live-02?itemId=/content/aip/journal/jap/108/9/10.1063/1.3504193&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes
http://aip.metastore.ingenta.com/content/aip/journal/jap/108/9/10.1063/1.3504193
10.1063/1.3504193
SEARCH_EXPAND_ITEM