1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Flash radiography with 24 GeV/c protons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/109/10/10.1063/1.3580262
1.
1. D. Hawkins, R. C. Smith, and E. C. Truslow, Project Y: The Los Alamos Story (The History of Modern Physics, 1800-1950: Volume II), (Tomash Publications, Los Angeles, CA, 1983).
2.
2. G. Seay, “Flash Radiography,” Los Alamos Scientific Laboratory Report No. GMX-7-484, 1952.
3.
3. D. Venable, Phys. Today 17(12), 19 (1964).
http://dx.doi.org/10.1063/1.3051266
4.
4. C. L. Mader, T. R. Neal, and R. D. Dick, LASL Phermex Data (University of California Press, Berkeley, 1980).
5.
5. C. Ekdahl, IEEE Trans. Plasma Sci. 30, 254 (2002).
http://dx.doi.org/10.1109/TPS.2002.1003868
6.
6. C. Cavailler, Proc.SPIE 4183, 23 (2001).
http://dx.doi.org/10.1117/12.424284
7.
7. Yongtao Zhao, “Plans for Proton/Ion Radiography at IMP, Lanzhou, China,” available at: http://www-aix.gsi.de/conferences/HEPM2009/talks/HEPM-2009-Zhao.pdf, accessed 7 January 2011.
8.
8. C. Morris, J. W. Hopson, and P. Goldstone, Los Alamos Sci. 30 (2006).
9.
9. A. Beer, Ann. Phys. Chem. 86, 78 (1852).
http://dx.doi.org/10.1002/andp.v162:5
10.
10. J. H. Hubbell and S. M. Seltzer, “Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest,” available at: http://www.nist.gov/pml/data/xraycoef/index.cfm, accessed: 1 January 2010.
11.
11. S. P. Denisov, S. V. Donskov, Y. P. Gorin, R. N. Krasnokutsky, A. I. Petrukhin, Y. D. Prokoshkin, and D. A. Stoyanova, Nucl. Phys. B 61, 62 (1973).
http://dx.doi.org/10.1016/0550-3213(73)90351-9
12.
12. J. McGill, P. Colestock, F. Neri, L. Rybarcyk et al., “Design Feasibility and Cost Estimate for a Single-Axis, Multipulse Proton Radiography Facility,” Los Alamos National Laboratory Report No. (2004).
13.
13. M. J. Burns, G. J. Caporaso, B. E. Carlsten, Y.-J. Chen, K. P. Chow, E. G. Cook, H. A. Davis, C. A. Ekdahl, W. A. Fawley, C. M. Fortgang, T. P. Hughes, B. R. Trent McCuistian, K. E. Nielsen, H. L. Rutkowski, S. Sampayan, W. L. Waldron, J. A. Watson, G. A. Westenskow, and S. S. Yu, AIP Conf. Proc. 650, 139 (2002).
http://dx.doi.org/10.1063/1.1530820
14.
14. Yu. M. Antipov, A. G. Afonin, A. V. Vasilevskii, I. A. Gusev, V. I. Demyanchuk, O. V. Zyat’kov, N. A. Ignashin, Yu G. Karshev, A. V. Larionov, A. V. Maksimov, A. A. Matyushin, A. V. Minchenko, M. S. Mikheev, V. A. Mirgorodskii, V. N. Peleshko, V. D. Rud’ko, V. I. Terekhov, N. E. Tyurin, Yu S. Fedotov, Yu A. Trutnev, V. V. Burtsev, A. A , Volkov, I. A. Ivanin, S. A. Kartanov, Yu P. Kuropatkin, A. L. Mikhailov, K. L. Mikhailyukov, O. V. Oreshkov, A. V. Rudnev, G. M. Spirov, M. A. Syrunin, M. V. Tatsenko, I. A. Tkachenko, and I. V. Khramov, Instrum. Exp. Tech. 53, 319 (2010).
http://dx.doi.org/10.1134/S0020441210030012
15.
15. F. E. Merrill, A. A. Golubev, F. G. Mariam, V. I. Turtikov, and D. Varentsov, Shock Compression Condens. Matter–2009, Parts 1 and 2 1195, 667 (2009).
16.
16. H. Bethe, Ann. Phys. 5, 325 (1930).
http://dx.doi.org/10.1002/andp.v397:3
17.
17. L. Landau, J. Exp. Phys. 8, 201 (1944).
18.
18. P. V. Vavilov, Soviet Phys. JETP 5, 749 (1957).
19.
19. B. Rossi, High-Energy Particles (Prentice-Hall, New Jersey, 1952).
20.
20. B. Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 (1941).
http://dx.doi.org/10.1103/RevModPhys.13.240
21.
21. G. Molière, Z. Naturforsch. 2a, 133 (1947).
22.
22. G. Moliere, Z. Naturforsch. 3a, 78 (1948).
23.
23. H. A. Bethe, Phys. Rev. 89, 1256 (1953).
http://dx.doi.org/10.1103/PhysRev.89.1256
24.
24. V. L. Highland, Nucl. Instrum. Meth. 129, 497 (1975).
http://dx.doi.org/10.1016/0029-554X(75)90743-0
25.
25. G. R. Lynch and O. I. Dahl, Nucl. Instrum. Meth.Phys. Res. B58, 6 (1991).
http://dx.doi.org/10.1016/0168-583X(91)95671-Y
26.
26. W. E. Frahn and R. H. Venter, Ann. Phys. 24, 243 (1963).
http://dx.doi.org/10.1016/0003-4916(63)90073-3
27.
27. J. Blatt and V. Weisskopf, Theoretical Nuclear Physics. (Dover Publications, Mineola, NY 1991).
28.
28. K. Nakamura, K. Hagiwara, K. Hikasa, H. Murayama, M. Tanabashi, T. Watari, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, H. R. Band, R. M. Barnett, T. Basaglia, E. Bergren, J. Beringer, G. Bernardi, W. Bertl, H. Bichsel, O. Biebel, E. Blucher, S. Blusk, R. N. Cahn, M. Carena, A. Ceccucci, D. Chakraborty, M.-C. Chen, R. S. Chivukula, G. Cowan, O. Dahl, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvea, T. DeGrand, G. Dissertori, B. Dobrescu, M. Doser, M. Drees, D. A. Edwards, S. Eidelman, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, B. Foster, T. K. Gaisser, L. Garren, H.-J. Gerber, G. Gerbier, T. Gherghetta, G. F. Giudice, S. Golwala, M. Goodman, C. Grab, A.V. Gritsan, J.-F. Grivaz, D. E. Groom, M. Grünewald, A. Gurtu, T. Gutsche, H. E. Haber, C. Hagmann, K. G. Hayes, M. Heffner, B. Heltsley, J. J. Hernández-Rey, A. Höcker, J. Holder, J. Huston, J. D. Jackson, K. F. Johnson, T. Junk, A. Karle, D. Karlen, B. Kayser, D. Kirkby, S. R. Klein, C. Kolda, R. V. Kowalewski, B. Krusche, Yu.V. Kuyanov, Y. Kwon, O. Lahav, P. Langacker, A. Liddle, Z. Ligeti, C.-J. Lin, T. M. Liss, L. Littenberg, K. S. Lugovsky, S. B. Lugovsky, J. Lys, H. Mahlke, T. Mannel, A.V. Manohar, W. J. Marciano, A. D. Martin, A. Masoni, D. Milstead, R. Miquel, K. Mönig, M. Narain, P. Nason, S. Navas, P. Nevski, Y. Nir, K. A. Olive, L. Pape, C. Patrignani, J. A. Peacock, S. T. Petcov, A. Piepke, G. Punzi, A. Quadt, S. Raby, G. Raffelt, B. N. Ratcliff, P. Richardson, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, C. T. Sachrajda, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, D. Scott, W. G. Seligman, M. H. Shaevitz, M. Silari, T. Sjöstrand, J. G. Smith, G. F. Smoot, S. Spanier, H. Spieler, A. Stahl, T. Stanev, S. L. Stone, T. Sumiyoshi, M. J. Syphers, J. Terning, M. Titov, N. P. Tkachenko, N. A. Törnqvist, D. Tovey, T. G. Trippe, G. Valencia, K. vanBibber, G. Venanzoni, M. G. Vincter, P. Vogel, A. Vogt, W. Walkowiak, C. W. Walter, D. R. Ward, B. R. Webber, G. Weiglein, E. J. Weinberg, J. D. Wells, A. Wheeler, L. R. Wiencke, C. G. Wohl, L. Wolfenstein, J. Womersley, C. L. Woody, R. L. Workman, A. Yamamoto, W.-M. Yao, O. V. Zenin, J. Zhang, R.-Y. Zhu, and P. A. Zyla, J. Phys. G: Nucl. Particle Phys. 37, 075021 (2010).
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
29.
29. A. M. Koehler, Science 160, 303 (1968).
http://dx.doi.org/10.1126/science.160.3825.303
30.
30. R. Wilson, AIP Conf. Proc., 9, 578 (1972).
31.
31. V. W. Steward, IEEE Trans. Nucl. Sci. NS/23, 577 (1976).
http://dx.doi.org/10.1109/TNS.1976.4328309
32.
32. D. West, in 7th International Conference on Cyclotrons and their Applications, edited by W. John (Birkhauser Verlag, Basel, Switzerland, 1975).
33.
33. R. Martin, M. Foss, J. Moenich and R. Lari, IEEE Trans. Nucl. Sci. NS/22, 1802 (1975).
http://dx.doi.org/10.1109/TNS.1975.4327996
34.
34. V. W. Steward and A. M. Koehler, Surg. Neurol. 2, 283 (1974).
35.
35. V. W. Steward and A. M. Koehler, Radiology 110, 217 (1974).
36.
36. V. W. Steward and A. M. Koehler, Phys. Med. Biol. 18, 591 (1973).
http://dx.doi.org/10.1088/0031-9155/18/4/030
37.
37. J. A. Cookson, B. H. Armitage and A. T. Ferguson, Non-Destr. Test. 5, 225 (1972).
http://dx.doi.org/10.1016/0029-1021(72)90085-0
38.
38. G. A. Ellard, P. T. Gammon, H. S. Helmy, and R. J. W. Rees, Nature 239, 157 (1972).
http://dx.doi.org/10.1038/239159a0
39.
39. A. M. Koehler, AIP Conf. Proc. 9, 586 (1972).
40.
40. A. M. Koehler, Phys. Med. Biol. 15, 181 (1970).
41.
41. C. T. Mottershead and J. D. Zumbro, in 17th Particle Accelerator Conference, edited by M. Comyn, M. Craddock, M. Reiser and J. Thomson (IEEE, New York, 1998), pp. 13971399.
42.
42. Bergoz Instrumentation, “Bergoz Instrumentation, Espace Allondon Ouest 01630 Saint Genis Pouilly, France,” available at http://www.bergoz.com/index.php?optio=com_content&view=frontpage&Itemid=1, accessed: 7 December 2010.
43.
43. JAI A/S - Denmark, Copenhagen, Denmark, “TM-1040 rogressive Scanning High Resolution Camera”, url: http://www.jai.com/SiteCollection Documents/Camera_Solutions_Manuals/TM-Manuals/Manual_TM-1040.pdf, accessed: February 2011.
44.
44. C. L. Morris and A. Saunders, “NewDisplay”, Report No. LA-CC-04-110, 2004.
45.
45. J. Zumbro, Nucl. Instrum. Meth. Phys. Res. B 246, 479 (2006).
http://dx.doi.org/10.1016/j.nimb.2005.12.040
46.
46. J. D. Zumbro, “Angle-cuts for the Brookhaven proton radiography experiments E955 and E963 calculated with MCNP (U),” Los Alamos national Laboratory, Report No. LA-UR-05-7370, 2005.
47.
47. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in Fortran, 2nd ed. (Cambridge University Press, Cambridge, 1992).
48.
48. G. Cunningham and C. Morris, Los Alamos Sci. 28, 76 (2003).
49.
49. C. L. Morris, K. R. Alrick, K. L. Buescher, D. J. Cagliostro, D. J. Clark, D. A. Clark, G. S. Cunningham, C. J. Espinoza, E. N. Ferm, R. Gallegos, S. D Gardner, J. J. Gomez, N. T. Gray, G. A. Greene, A. L. Hanson, G. W. Hart, M. Y. Hockaday, G. E. Hogan, N. S. Khalsa, N. S. King, K. K. Kwiatkowski, R. P. Liljestrand, A. R. Mathews, J. B. McClelland, B. Montoya, D. V. Morgan, K. B. Morley, C. T. Mottershead, K. H. Mueller, M. M. Murray, P. D. Pazuchanics, J. E. Pearson, R. A. Pelak, A. Saunders, J. Scaduto, S. F. Sterbenz, R. T. Thompson, T. W. Tunnell, K. R. Vixie, S. A. Watson, A. Whiteson, and M. D. Wilke, Defense Res. Rev. 11, 51 (2004).
http://aip.metastore.ingenta.com/content/aip/journal/jap/109/10/10.1063/1.3580262
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Relative uncertainty in the radiographic determination of thickness (Δl/l) for transmission and multiple-scattering radiography as a function of the dimensionless thickness.

Image of FIG. 2.

Click to view

FIG. 2.

(Color) Layout of the lens system used for the measurements reported here. The rays from the diffuser are separated by 1 mrad of scattering; the rays from the object are also separated by 1 mrad of scattering. Note the exaggerated vertical scale.

Image of FIG. 3.

Click to view

FIG. 3.

(Left axis) Peak light output of the camera LSO system versus proton fluence (solid points), and linear fit (solid line). (Right axis) Camera gain (ratio of proton fluence to light output), plotted as the deviation from the average gain, versus proton fluence.

Image of FIG. 4.

Click to view

FIG. 4.

(Left) Calculated beam position at the image plane from the Pulnix cameras versus measured beam position in the image plane. (Right) The residuals from the fit shown on the left.

Image of FIG. 5.

Click to view

FIG. 5.

(Color) (Left) photograph of step wedges in the object location. (Right) proton transmission radiograph of the step wedges.

Image of FIG. 6.

Click to view

FIG. 6.

(Top) Measured transmission as a function of thickness for the step wedge data. The lines are fits to the data using Eq. (16). The circles and solid lines are taken with a 6.68 mrad collimator and the x’s and dashed lines are with a 4.56 mrad collimator. (Bottom) The residuals.

Image of FIG. 7.

Click to view

FIG. 7.

(Color online) FTO radiograph corrected for fixed pattern noise and divided by the beam shape. Transmission is plotted on a logarithmic scale.

Image of FIG. 8.

Click to view

FIG. 8.

(Color) FTO data (dashed lines) model (solid lines) and the residuals. The red curves are for the 4.56 mrad collimator and the blue curves are for the 6.68 mrad collimator. The curves correspond to projections through the center of the radiographs.

Image of FIG. 9.

Click to view

FIG. 9.

Images of the steps in the density reconstruction.

Image of FIG. 10.

Click to view

FIG. 10.

Plot of the reconstructed densities on a horizontal line through the center of the FTO. The points marked with x’s are for a single image, the solid line is an average obtained from 5 images and the dashed line is the standard deviation of each point for the five images.

Image of FIG. 11.

Click to view

FIG. 11.

Fit to the edge of the cavity.

Tables

Generic image for table

Click to view

Table I.

Fitted parameters for the radiation length and attenuation length parameterization.

Loading

Article metrics loading...

/content/aip/journal/jap/109/10/10.1063/1.3580262
2011-05-19
2014-04-17

Abstract

The accuracy of density measurements and position resolution in flash (40 ns) radiography of thick objects with 24 Gev/cprotons is investigated. A global model fit to step wedge data is shown to give a good description spanning the periodic table. The parameters obtained from the step wedge data are used to predict transmission through the French Test Object (FTO), a test object of nested spheres, to a precision better than 1%. Multiple trials have been used to show that the systematic errors are less than 2%. Absolute agreement between the average radiographicmeasurements of the density and the known density is 1%. Spatial resolution has been measured to be 200 μm at the center of the FTO. These data verify expectations of the benefits provided by high energy hadron radiography for thick objects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/109/10/1.3580262.html;jsessionid=stnb6rjg8bi1.x-aip-live-03?itemId=/content/aip/journal/jap/109/10/10.1063/1.3580262&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Flash radiography with 24 GeV/c protons
http://aip.metastore.ingenta.com/content/aip/journal/jap/109/10/10.1063/1.3580262
10.1063/1.3580262
SEARCH_EXPAND_ITEM