1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/109/12/10.1063/1.3600067
1.
1. A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).
http://dx.doi.org/10.1016/0009-2614(74)85031-1
2.
2. Z. Q. Fan and K. Q. Chen, Appl. Phys. Lett. 96, 053509 (2010).
http://dx.doi.org/10.1063/1.3309708
3.
3. X. Q. Deng, J. C. Zhou, Z. H. Zhang, G. P. Tang, and M. Qiu, Appl. Phys. Lett. 95, 103113 (2009).
http://dx.doi.org/10.1063/1.3205114
4.
4. A. Troisi and M. A. Ratner, Nano Lett. 4, 591 (2004).
http://dx.doi.org/10.1021/nl0352088
5.
5. J. B. Pan, Z. H. Zhang, X. Q. Deng, M. Qiu, and C. Guo, Appl. Phys. Lett. 97, 203104 (2010).
http://dx.doi.org/10.1063/1.3515904
6.
6. J. Taylor, M. Brandbyge, and K. Stokbro, Phys. Rev. Lett. 89, 138301 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.138301
7.
7. M. Qiu, Z. H. Zhang, X. Q. Deng, and J. B. Pan, Appl. Phys. Lett. 97, 242109 (2010).
http://dx.doi.org/10.1063/1.3526723
8.
8. J. B. Pan, Z. H. Zhang, K. H. Ding, X. Q. Deng, and C. Guo, Appl. Phys. Lett. 98, 092102 (2011).
http://dx.doi.org/10.1063/1.3556278
9.
9. I. Díez-Pérez, J. Hihath, Y. Lee, L. P. Yu, L. Adamska, M. A. Kozhushner, I. I. Oleynik, and N. J. Tao, Nat. Chem. 1, 635 (2009).
http://dx.doi.org/10.1038/nchem.392
10.
10. S. Pana, Q. Fua, T. Huang, A. Zhao, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, Proc. Natl. Acad. Sci. U.S.A. 106, 15259 (2009).
http://dx.doi.org/10.1073/pnas.0903131106
11.
11. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
12.
12. D. A. Areshkin and C. T. White, Nano Lett. 7, 3253 (2007).
http://dx.doi.org/10.1021/nl070708c
13.
13. Z. Y. Li, H. Y. Qian, J. Wu, B. L. Gu, and W. H. Duan, Phys. Rev. Lett. 100, 206802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206802
14.
14. M. Q. Long, L. Tang, D. Wang, L. J. Wang, and Z. G. Shuai, J. Am. Chem. Soc. 131, 17728 (2009).
http://dx.doi.org/10.1021/ja907528a
15.
15. X. R. Wang, Y. J. Ouyang, X. L. Li, H. L. Wang, J. Guo, and H. J. Dai, Phys. Rev. Lett. 100, 206803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206803
16.
16. Y. Ren and K. Q. Chen, J. Appl. Phys. 107, 044514 (2010).
http://dx.doi.org/10.1063/1.3309775
17.
17. H. Ren, Q. X. Li, Y. Luo, and J. L. Yang, Appl. Phys. Lett. 94, 173110 (2009).
http://dx.doi.org/10.1063/1.3126451
18.
18. K. T. Lam and G. Liang, in Nanoelectronics Conference, Shanghai, China, 24–27 March 2008 (2nd IEEE International), pp. 109111.
19.
19. X. H. Zheng, R. N. Wang, L. L. Song, Z. X. Dai, X. L. Wang, and Z. Zeng, Appl. Phys. Lett. 95, 123109 (2009).
http://dx.doi.org/10.1063/1.3237165
20.
20. J. Kang, F. M. Wu, and J. B. Li, Appl. Phys. Lett. 98, 083109 (2011).
http://dx.doi.org/10.1063/1.3559001
21.
21. W. Y. Kim and K. S. Kim, Nat. Nanotechnol. 3, 408 (2008).
http://dx.doi.org/10.1038/nnano.2008.163
22.
22. F. Muñoz-Rojas, J. Fernández-Rossier, and J. J. Palacios, Phys. Rev. Lett. 102, 136810 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.136810
23.
23. R. Qin, J. Lu, L. Lai, J. Zhou, H. Li, Q. H. Liu, G. F. Luo, L. N. Zhao, Z. X. Gao, W. N. Mei, and G. P. Li, Phys. Rev. B 81, 233403 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.233403
24.
24. Z. F. Wang, Q. X. Li, Q. W. Shi, X. P. Wang, J. G. Hou, H. X. Zheng, and J. Chen, Appl. Phys. Lett. 92, 133119 (2008).
http://dx.doi.org/10.1063/1.2906631
25.
25. M. G. Zeng, L. Shen, M. Yang, C. Zhang, and Y. P. Feng, Appl. Phys. Lett. 98, 053101 (2011).
http://dx.doi.org/10.1063/1.3549154
26.
26. A. Kargar and C. Lee in Nanotechnology Conference, Genoa, Italy, 26–30 July 2009 (9th IEEE International Conference on Nanotechnology), pp. 243245.
27.
27. X. H. Zheng, X. L. Wang, T. A. Abtew, and Z. Zeng, J. Phys. Chem. C 114, 4190 (2010).
http://dx.doi.org/10.1021/jp911203n
28.
28. S. S. Yu, W. T. Zheng, and Q. Jiang, IEEE Trans. Nanotechnol. 9, 78 (2010).
http://dx.doi.org/10.1109/TNANO.2009.2020797
29.
29. E. J. Kan, Z. Y. Li, J. L. Yang, and J. G. Hou, J. Am. Chem. Soc. 130, 4224 (2008).
http://dx.doi.org/10.1021/ja710407t
30.
30. M. H. Wu, X. J. Wu, Y. Gao, and X. C. Zeng, Appl. Phys. Lett. 94, 223111 (2009).
http://dx.doi.org/10.1063/1.3143611
31.
31. M. H. Wu, X. J. Wu, and X. C. Zeng, J. Phys. Chem. C 114, 3937 (2010).
http://dx.doi.org/10.1021/jp100027w
32.
32. J. Li, Z. Y. Li, G. Zhou, Z. R. Liu, J. Wu, B. L. Gu, J. Ihm, and W. H. Duan, Phys. Rev. B 82, 115410 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115410
33.
33. J. He, K. Q. Chen, Z. Q. Fan, L. M. Tang, and W. P. Hu, Appl. Phys. Lett. 97, 193305 (2010).
http://dx.doi.org/10.1063/1.3515921
34.
34. B. Akdim and R. Pachter, ACS Nano 5, 1769 (2011).
http://dx.doi.org/10.1021/nn102403j
35.
35. E. Erdogan, I. Popov, C. G. Rocha, G. Cuniberti, S. Roche, and G. Seifert, Phys. Rev. B 83, 041401R (2011).
http://dx.doi.org/10.1103/PhysRevB.83.041401
36.
36. S. M. Choi and S. H. Jhi, Phys. Rev. Lett. 101, 266105 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.266105
37.
37. E. J. Kan, H. J. Xiang, F. Wu, C. Lee, J. L. Yang, and M. H. Whangbo, Appl. Phys. Lett. 96, 102503 (2010).
http://dx.doi.org/10.1063/1.3327884
38.
38. W. H. Brito and R. H. Miwa, Phys. Rev. B 82, 045417 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045417
39.
39. Z. Q. Zhang, B. Liu, K. C. Hwang, and H. J. Gao, Appl. Phys. Lett. 98, 121909 (2011).
http://dx.doi.org/10.1063/1.3569589
40.
40. V. A. Rigo, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, J. Appl. Phys. 109, 053715 (2011).
http://dx.doi.org/10.1063/1.3553849
41.
41. D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu, Nano Lett. 9, 1752 (2009).
http://dx.doi.org/10.1021/nl803279t
42.
42. B. D. Guo, Q. Liu, E. Chen, H. W. Zhu, L. Fang, and J. R. Gong, Nano Lett. 10, 4975 (2010).
http://dx.doi.org/10.1021/nl103079j
43.
43. Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
44.
44. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245407
45.
45. M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
46.
46. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.6207
http://aip.metastore.ingenta.com/content/aip/journal/jap/109/12/10.1063/1.3600067
Loading
/content/aip/journal/jap/109/12/10.1063/1.3600067
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/109/12/10.1063/1.3600067
2011-06-21
2015-07-29

Abstract

By applying nonequilibrium Green’s functions in combination with density-function theory, we investigate the electronic transport properties of armchair graphene nanoribbons devices with one undoped and one nitrogen-doped armchair graphene nanoribbons electrode. For the doped armchair graphene nanoribbons electrode, an N dopant is considered to substitute the center or edge carbon atom. The results show that the electronic transport properties are strongly dependent on the width of the ribbon and the position of the N dopant. The rectifying behavior with large rectifying ratio can be observed and can be modulated by changing the width of the ribbon or the position of the N dopant. A mechanism for the rectifying behavior is suggested.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/109/12/1.3600067.html;jsessionid=3srt74qjnh12b.x-aip-live-03?itemId=/content/aip/journal/jap/109/12/10.1063/1.3600067&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device
http://aip.metastore.ingenta.com/content/aip/journal/jap/109/12/10.1063/1.3600067
10.1063/1.3600067
SEARCH_EXPAND_ITEM