Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Zener, Phys. Rev. 82, 403 (1951).
2. A. J. Millis, P. B. Littlewood, and B. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
3. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
4. R. H. Heffner, J. E. Sonier, D. E. MacLaughlin, G. J. Nieuwenhuys, G. Ehlers, F. Mezei, S.-W. Cheong, J. S. Gardner, and H. Röder, Phys. Rev. Lett. 85, 3285 (2000).
5. V. Chechersky, A. Nath, C. Michel, M. Hervieu, K. Ghosh, and R. L. Greene, Phys. Rev. B 62, 5316 (2000).
6. M. M. Savosta and P. Novák, Phys. Rev. Lett. 87, 137204 (2001).
7. M. M. Savosta, V. N. Krivoruchko, I. A. Danilenko, V. Yu. Tarenkov, T. E. Konstantinova, A. V. Borodin, and V. N. Varyukhin, Phys. Rev. B 69, 024413 (2004).
8. Colossal Magnetoresistive Oxides, edited by Y. Tokura (Gordon and Breach, Amsterdam, 2000).
9. M. A. López-Quintela, L. E. Hueso, J. Rivas, and F. Rivadulla, Nanotechnology 14, 212 (2003).
10. J. Curiale, M. Granada, H. E. Troiani, R. D. Sánchez, A. G. Leyva, P. Levy, and K. Samwer, Appl. Phys. Lett. 95, 043106 (2009).
11. S. Roy, I. Dubenko, D. D. Edorh, and N. Ali, J. Appl. Phys. 96, 1202 (2004).
12. H. Y. Hwang, S. W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).
13. P. K. Siwach, H. K. Singh, and O. N. Srivastava, J. Phys.: Condens. Matter, 20, 273201 (2008).
14. Y. M. Kang, A. N. Ulyanov, G. M. Shin, S. Y Lee, D. G. Yoo, and S. I. Yoo. J. Appl. Phys. 105, 07D711 (2009).
15. M. H. Phan and S. C. Yu, Handbook of Ceramic Materials Research Trends, Nova Science, New York, 2007.
16. D. Zhu, B. G. Shen, J. R. Sun, H. W. Zhao, and W. S. Zhan, Appl. Phys. Lett. 78, 3863 (2001).
17. M. Bibes, L. Balcells, J. Fontcuberta, M. Wojcik, S. Nadolski, and E. Jedryka, Appl. Phys. Lett. 82, 928 (2003).
18. X-ray Absorption: Principles, Applications, Techniques of EXAFS, and XANES, edited by D. C. Koningsberger and R. Prins (Wiley Interscience, New York, 1988).
19. P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys. 53, 769 (1981).
20. M. Bibes, L. Balcells, S. Valencia, J. Fontcuberta, M. Wojcik, E. Jedryka, and S. Nadolski, Phys. Rev. Lett. 87, 067210 (2001).
21. V. Krivoruchko, T. Konstantinova, A. Mazur, A. Prokhorov, and V. Varyukhin, J. Magn. Magn. Mater. 300, e122 (2006). Here, in Ref. 21, the TEM image of the NP2 powders was also presented. But, it was made a typing error (“12 nm”) writing the size of particle. The scale in the body of the TEM image of the NP2 sample is correct and the particle size (∼20 nm) can be estimated using the scale.
22. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974).
23. G. Subías, J. García, M. G. Proietti, and J. Blasco, Phys. Rev. B 56, 8183 (1997).
24. A. N. Ulyanov, D. S. Yang, N. Chau, S. C. Yu, and S. I. Yoo, J. Appl. Phys. 103, 07F722 (2008).
25. V. Markovich, I. Fita, A. Wisniewski, G. Jung, D. Mogilyansky, R. Puzniak, L. Titelman, and G. Gorodetsky, Phys. Rev. B 81, 134440 (2010).
26. A. S. Mazur, V. N. Krivoruchko, and I. A. Danilenko, Low Temp. Phys. 33, 931 (2007).
27. J. Curiale, R. D. Sánchez, H. E. Troiani, A. G. Leyva, and P. Levy, Appl. Phys. Lett. 87, 043113 (2005).
28. A. M. Portis and A. C. Gossard, J. Appl. Phys. 31, S205 (1960).
29. M. M. Savosta and P. Novák, J. Magn. Magn. Mater. 242–245, 672 (2002).

Data & Media loading...


Article metrics loading...



We present the study of the local structure and magnetic inhomogeneity of nano-sized La0.7Sr0.3MnO3 manganites performed by x-rayabsorption fine structure (XAFS) spectroscopy and nuclear magnetic resonance(NMR).Nano-powders with particle size of 50–200 nm (NP1) and 20 nm (NP2), and bulk samples (BS) were studied. EXAFS data show the difference between the local structure of core and outer shell of the nano-particle. The data evidenced that the shell of particles presents the disordered crystalline array. According to the NMR, at low temperature the magnetic state of NP1 sample is homogenous. However, with increase of temperature the two ferromagnetic phases, with strong and weakened double exchange, coexist. The NP2 powder is magnetically homogeneous and characterized by weakened double exchange at all temperatures of the existence of the magneto-ordered state. The results specify on possible existence of characteristic spatial scale below which the phase stratification becomes energetically unfavorable.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd