1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Interaction potential for aluminum nitride: A molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/109/3/10.1063/1.3525983
1.
1.V. I. Koshchenko, Y. K. Grinberg, and A. F. Demidenko, Inorg. Mater. 20, 1550 (1984).
2.
2.M. Ueno, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. B 45, 10123 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.10123
3.
3.Q. Xia, H. Xia, and A. L. Ruoff, J. Appl. Phys. 73, 8198 (1993).
http://dx.doi.org/10.1063/1.353435
4.
4.W. J. Meng, J. A. Sell, T. A. Perry, and G. L. Eesley, J. Vac. Sci. Technol. A 11, 1377 (1993).
http://dx.doi.org/10.1116/1.578557
5.
5.S. Uehara, T. Masamoto, A. Onodera, M. Ueno, O. Shimomura, and K. Takemura, J. Phys. Chem. Solids 58, 2093 (1997).
http://dx.doi.org/10.1016/S0022-3697(97)00150-9
6.
6.J. C. Nipko and C. -K. Loong, Phys. Rev. B 57, 10550 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.10550
7.
7.J. C. Nipko, C. K. Loong, C. M. Balkas, and R. F. Davis, Appl. Phys. Lett. 73, 34 (1998).
http://dx.doi.org/10.1063/1.121714
8.
8.M. Schwoerer-Böhning, A. T. Macrander, M. Pabst, and P. Pavone, Phys. Status Solidi B 215, 177 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3951(199909)215:1<177::AID-PSSB177>3.0.CO;2-8
9.
9.T. Mashimo, M. Uchino, A. Nakamura, T. Kobayashi, E. Takasawa, T. Sekine, Y. Noguchi, H. Hikosaka, K. Fukuoka, and Y. Syono, J. Appl. Phys. 86, 6710 (1999).
http://dx.doi.org/10.1063/1.371749
10.
10.H. Iwanaga, A. Kunishige, and S. Takeuchi, J. Mater. Sci. 35, 2451 (2000).
http://dx.doi.org/10.1023/A:1004709500331
11.
11.J. Senawiratne, M. Strassburg, N. Dietz, U. Haboeck, A. Hoffmann, V. Noveski, R. Dalmau, R. Schlesser, and Z. Sitar, Phys. Status Solidi C 2, 2774 (2005).
http://dx.doi.org/10.1002/pssc.200461509
12.
12.K. Kazan, E. Moussaed, R. Nader, and P. Masri, Phys. Status Solidi C 4, 204 (2007).
http://dx.doi.org/10.1002/pssc.200673503
13.
13.M. Kazan, C. Zgheib, E. Moussaed, and P. Masri, Diamond Relat. Mater. 15, 1169 (2006).
http://dx.doi.org/10.1016/j.diamond.2005.11.014
14.
14.H. Chen, K. Y. Chen, D. A. Drabold, and M. E. Kordesch, Appl. Phys. Lett. 77, 1117 (2000).
http://dx.doi.org/10.1063/1.1289496
15.
15.K. Y. Chen and D. A. Drabold, J. Appl. Phys. 91, 9743 (2002).
http://dx.doi.org/10.1063/1.1478132
16.
16.E. Ruiz, S. Alvarez, and P. Alemany, Phys. Rev. B 49, 7115 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.7115
17.
17.N. E. Christensen and I. Gorczyca, Phys. Rev. B 47, 4307 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.4307
18.
18.N. E. Christensen and I. Gorczyca, Phys. Rev. B 50, 4397 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.4397
19.
19.A. AlShaikhi and G. P. Srivastava, Phys. Status Solidi C 3, 1495 (2006).
http://dx.doi.org/10.1002/pssc.200565120
20.
20.C. Bungaro, K. Rapcewicz, and J. Bernholc, Phys. Rev. B 61, 6720 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.6720
21.
21.A. F. Wright and J. S. Nelson, Phys. Rev. B 51, 7866 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.7866
22.
22.R. Pandey, P. Zapol, and M. Causa, Phys. Rev. B 55, R16009 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R16009
23.
23.D. G. McCulloch, D. R. McKenzie, and C. M. Goringe, J. Appl. Phys. 88, 5028 (2000).
http://dx.doi.org/10.1063/1.1316790
24.
24.T. J. Campbell, R. K. Kalia, A. Nakano, F. Shimojo, K. Tsuruta, P. Vashishta, and S. Ogata, Phys. Rev. Lett. 82, 4018 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4018
25.
25.Y. C. Chen, Z. Lu, K. I. Nomura, W. Wang, R. K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. Lett. 99, 155506 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.155506
26.
26.Y. C. Chen, K. Nomura, R. K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. Lett. 103, 035501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.035501
27.
27.Z. Lu, K. Nomura, A. Sharma, W. Q. Wang, C. Zhang, A. Nakano, R. Kalia, P. Vashishta, E. Bouchaud, and C. Rountree, Phys. Rev. Lett. 95, 135501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.135501
28.
28.A. Nakano, L. S. Bi, R. K. Kalia, and P. Vashishta, Phys. Rev. Lett. 71, 85 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.85
29.
29.A. Nakano, R. K. Kalia, and P. Vashishta, Phys. Rev. Lett. 73, 2336 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2336
30.
30.P. Vashishta, R. K. Kalia, J. P. Rino, and I. Ebbsjo, Phys. Rev. B 41, 12197 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.12197
31.
31.R. K. Kalia, A. Nakano, A. Omeltchenko, K. Tsuruta, and P. Vashishta, Phys. Rev. Lett. 78, 2144 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2144
32.
32.R. K. Kalia, A. Nakano, K. Tsuruta, and P. Vashishta, Phys. Rev. Lett. 78, 689 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.689
33.
33.A. Nakano, R. K. Kalia, and P. Vashishta, Phys. Rev. Lett. 75, 3138 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3138
34.
34.P. Vashishta, R. K. Kalia, and I. Ebbsjo, Phys. Rev. Lett. 75, 858 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.858
35.
35.A. Chatterjee, R. K. Kalia, A. Nakano, A. Omeltchenko, K. Tsuruta, P. Vashishta, C. K. Loong, M. Winterer, and S. Klein, Appl. Phys. Lett. 77, 1132 (2000).
http://dx.doi.org/10.1063/1.1289661
36.
36.H. P. Chen, R. K. Kalia, A. Nakano, P. Vashishta, and I. Szlufarska, J. Appl. Phys. 102, 063514 (2007).
http://dx.doi.org/10.1063/1.2781324
37.
37.F. Shimojo, I. Ebbsjo, R. K. Kalia, A. Nakano, J. P. Rino, and P. Vashishta, Phys. Rev. Lett. 84, 3338 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3338
38.
38.I. Szlufarska, A. Nakano, and P. Vashishta, Science 309, 911 (2005).
http://dx.doi.org/10.1126/science.1114411
39.
39.P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, J. Appl. Phys. 101, 103515 (2007).
http://dx.doi.org/10.1063/1.2724570
40.
40.P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, J. Appl. Phys. 103, 083504 (2008).
http://dx.doi.org/10.1063/1.2901171
41.
41.C. Zhang, R. K. Kalia, A. Nakano, and P. Vashishta, Appl. Phys. Lett. 91, 071906 (2007).
http://dx.doi.org/10.1063/1.2753092
42.
42.C. Zhang, R. K. Kalia, A. Nakano, and P. Vashishta, Appl. Phys. Lett. 91, 121911 (2007).
http://dx.doi.org/10.1063/1.2786865
43.
43.N. J. Lee, R. K. Kalia, A. Nakano, and P. Vashishta, Appl. Phys. Lett. 89, 093101 (2006).
http://dx.doi.org/10.1063/1.2338808
44.
44.F. Shimojo, S. Kodiyalam, I. Ebbsjo, R. K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. B 70, 184111 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.184111
45.
45.S. Kodiyalam, R. K. Kalia, H. Kikuchi, A. Nakano, F. Shimojo, and P. Vashishta, Phys. Rev. Lett. 86, 55 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.55
46.
46.S. Kodiyalam, R. K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. Lett. 93, 203401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.203401
47.
47.P. S. Branicio, R. K. Kalia, A. Nakano, J. P. Rino, F. Shimojo, and P. Vashishta, Appl. Phys. Lett. 82, 1057 (2003).
http://dx.doi.org/10.1063/1.1542681
48.
48.P. S. Branicio, J. P. Rino, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, J. Appl. Phys. 94, 3840 (2003).
http://dx.doi.org/10.1063/1.1601691
49.
49.X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, Appl. Phys. Lett. 79, 4577 (2001).
http://dx.doi.org/10.1063/1.1428621
50.
50.X. T. Su, R. K. Kalia, A. Nakano, P. Vashishta, and A. Madhukar, Appl. Phys. Lett. 78, 3717 (2001).
http://dx.doi.org/10.1063/1.1377618
51.
51.M. E. Bachlechner, A. Omeltchenko, A. Nakano, R. K. Kalia, P. Vashishta, I. Ebbsjo, and A. Madhukar, Phys. Rev. Lett. 84, 322 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.322
52.
52.E. Lidorikis, M. E. Bachlechner, R. K. Kalia, A. Nakano, P. Vashishta, and G. Z. Voyiadjis, Phys. Rev. Lett. 87, 086104 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.086104
53.
53.A. Omeltchenko, M. E. Bachlechner, A. Nakano, R. K. Kalia, P. Vashishta, I. Ebbsjo, A. Madhukar, and P. Messina, Phys. Rev. Lett. 84, 318 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.318
54.
54.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
55.
55.A. Nakano, R. K. Kalia, and P. Vashishta, J. Non-Cryst. Solids 171, 157 (1994).
http://dx.doi.org/10.1016/0022-3093(94)90351-4
56.
56.L. E. McNeil, M. Grimsditch, and R. H. French, J. Am. Ceram. Soc. 76, 1132 (1993).
http://dx.doi.org/10.1111/j.1151-2916.1993.tb03730.x
57.
57.K. Tsubouchi, K. Sugai, and N. Mikoshiba, Ultrasonics Symposia Proceedings (IEEE, New York, 1981), p. 375.
58.
58.F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
59.
59.J. B. MacChesney, P. M. Bridenbaugh, and P. B. O’Connor, Mater. Res. Bull. 5, 783 (1970).
http://dx.doi.org/10.1016/0025-5408(70)90028-0
60.
60.Y. Goldberg, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001), Vol. XVII, p. 194.
61.
61.V. T. Golovchan, Int. Appl. Mech. 34, 755 (1998).
http://dx.doi.org/10.1007/BF02702130
62.
62.L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1970), Vol. 7.
http://aip.metastore.ingenta.com/content/aip/journal/jap/109/3/10.1063/1.3525983
Loading
/content/aip/journal/jap/109/3/10.1063/1.3525983
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/109/3/10.1063/1.3525983
2011-02-07
2014-08-02

Abstract

An effective interatomic interaction potential for AlN is proposed. The potential consists of two-body and three-body covalent interactions. The two-body potential includes steric repulsions due to atomic sizes, Coulomb interactions resulting from charge transfer between atoms, charge-induced dipole-interactions due to the electronic polarizability of ions, and induced dipole–dipole (van der Waals) interactions. The covalent characters of the Al–N–Al and N–Al–N bonds are described by the three-body potential. The proposed three-body interaction potential is a modification of the Stillinger–Weber form proposed to describe Si. Using the molecular dynamics method, the interaction potential is used to study structural, elastic, and dynamical properties of crystalline and amorphous states of AlN for several densities and temperatures. The structural energy for wurtzite (2H) structure has the lowest energy, followed zinc-blende and rock-salt (RS) structures. The pressure for the structural transformation from wurtzite-to-RS from the common tangent is found to be 24 GPa. For AlN in the wurtzite phase, our computed elastic constants ( , , , , , and ), melting temperature, vibrational density-of-states, and specific heat agree well with the experiments. Predictions are made for the elastic constant as a function of density for the crystalline and amorphous phase. Structural correlations, such as pair distribution function and neutron and x-ray static structure factors are calculated for the amorphous and liquid state.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/109/3/1.3525983.html;jsessionid=i1p9gqfc3sc9.x-aip-live-03?itemId=/content/aip/journal/jap/109/3/10.1063/1.3525983&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interaction potential for aluminum nitride: A molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride
http://aip.metastore.ingenta.com/content/aip/journal/jap/109/3/10.1063/1.3525983
10.1063/1.3525983
SEARCH_EXPAND_ITEM