1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electromechanical phenomena in semiconductor nanostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/109/3/10.1063/1.3533402
1.
1.W. G. Cady, Piezoelectricity, 1st ed. (McGraw-Hill, New York, 1946).
2.
2.G. Bester, X. Wu, D. Vanderbilt, and A. Zunger, Phys. Rev. Lett. 96, 187602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.187602
3.
3.G. Bester, A. Zunger, X. Wu, and D. Vanderbilt, Phys. Rev. B 74, 081305(R) (2006).
http://dx.doi.org/10.1103/PhysRevB.74.081305
4.
4.R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, J. Phys. Chem. B 101, 10141 (1997).
http://dx.doi.org/10.1021/jp971522c
5.
5.L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Course of Theoretical Physics, Vol. 7, 3rd ed. (Butterworth–Heinemann, Oxford, 1999).
6.
6.B. A. Auld, Acoustic Fields and Waves in Solids (Pergamon, New York, 1990), Vol. 1–2.
7.
7.D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129, 1009 (1963).
http://dx.doi.org/10.1103/PhysRev.129.1009
8.
8.P. Maheswaranathan, R. J. Sladek, and U. Debska, Phys. Rev. B 31, 7910 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.7910
9.
9.S. Muensit, E. M. Goldys, and I. L. Guy, Appl. Phys. Lett. 75, 3965 (1999).
http://dx.doi.org/10.1063/1.125508
10.
10.I. L. Guy, S. Muensit, and E. M. Goldys, Appl. Phys. Lett. 75, 4133 (1999).
http://dx.doi.org/10.1063/1.125560
11.
11.M. -H. Zhao, Z. -L. Wang, and S. X. Mao, Nano Lett. 4, 587 (2004).
http://dx.doi.org/10.1021/nl035198a
12.
12.H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. L. Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. Gösele, Small 2, 561 (2006).
http://dx.doi.org/10.1002/smll.200500331
13.
13.D. A. Scrymgeour, T. L. Sounart, N. C. Simmons, and J. W. P. Hsu, J. Appl. Phys. 101, 014316 (2007).
http://dx.doi.org/10.1063/1.2405014
14.
14.V. Tilak, P. Batoni, J. Jiang, and A. Knobloch, Appl. Phys. Lett. 90, 043508 (2007).
http://dx.doi.org/10.1063/1.2434180
15.
15.F. Felten, G. A. Schneider, J. M. Saldana, and S. V. Kalinin, J. Appl. Phys. 96, 563 (2004).
http://dx.doi.org/10.1063/1.1758316
16.
16.S. V. Kalinin, E. A. Eliseev, and A. N. Morozovska, Appl. Phys. Lett. 88, 232904 (2006).
http://dx.doi.org/10.1063/1.2206992
17.
17.A. N. Morozovska, S. V. Svechnikov, E. A. Eliseev, and S. V. Kalinin, Phys. Rev. B 76, 054123 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.054123
18.
18.T. Jungk, A. Hoffmann, and E. Soergel, Appl. Phys. Lett. 91, 253511 (2007).
http://dx.doi.org/10.1063/1.2827566
19.
19.I. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi, Appl. Phys. Lett. 95, 233102 (2009).
http://dx.doi.org/10.1063/1.3271525
20.
20.M. Feneberg and K. Thonke, J. Phys.: Condens. Matter 19, 403201 (2007).
http://dx.doi.org/10.1088/0953-8984/19/40/403201
21.
21.M. Born, Dynamik der Kristallgitter (Teubner, Leipzig, 1915).
22.
22.M. Born and E. Bormann, Ann. Phys. 62, 218 (1920).
http://dx.doi.org/10.1002/andp.19203671103
23.
23.M. Born and M. Göppert-Mayer, Handbuch der Physik (Verlag Julius Springer, Berlin, 1933), Vol. 24, Chap. 4, p. 635.
24.
24.M. Born, Problems of Atomic Dynamics (Frederick Ungar, New York, 1960).
25.
25.K. Huang, Philos. Mag. 40, 733 (1949).
26.
26.M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954).
27.
27.J. L. Birman, Phys. Rev. 111, 1510 (1958).
http://dx.doi.org/10.1103/PhysRev.111.1510
28.
28.J. C. Phillips and J. A. Van Vechten, Phys. Rev. Lett. 23, 1115 (1969).
http://dx.doi.org/10.1103/PhysRevLett.23.1115
29.
29.J. W. F. Woo, Phys. Rev. B 4, 1218 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.1218
30.
30.T. Hidaka, Phys. Rev. B 5, 4030 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.4030
31.
31.R. M. Martin, Phys. Rev. B 5, 1607 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.1607
32.
32.W. A. Harrison, Phys. Rev. B 10, 767 (1974).
http://dx.doi.org/10.1103/PhysRevB.10.767
33.
33.H. -c. Hwang and J. H. Henkel, Phys. Rev. B 17, 4100 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.4100
34.
34.K. -s. Kam and J. H. Henkel, Phys. Rev. B 17, 1361 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.1361
35.
35.S. Y. Ren, Phys. Rev. B 22, 2908 (1980).
http://dx.doi.org/10.1103/PhysRevB.22.2908
36.
36.J. B. McKitterick, Phys. Rev. B 28, 7384 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.7384
37.
37.S. de Gironcoli, S. Baroni, and R. Resta, Phys. Rev. Lett. 62, 2853 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.2853
38.
38.A. Dal Corso, R. Resta, and S. Baroni, Phys. Rev. B 47, 16252 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16252
39.
39.A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, Phys. Rev. B 50, 10715 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.10715
40.
40.A. P. Mirgorodsky, M. B. Smirnov, E. Abdelmounîm, T. Merle, and P. E. Quintard, Phys. Rev. B 52, 3993 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.3993
41.
41.F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R10024
42.
42.K. Shimada, T. Sota, and K. Suzuki, J. Appl. Phys. 84, 4951 (1998).
http://dx.doi.org/10.1063/1.368739
43.
43.F. Bernardini and V. Fiorentini, Phys. Rev. B 64, 085207 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085207
44.
44.F. Bernardini and V. Fiorentini, Appl. Phys. Lett. 80, 4145 (2002).
http://dx.doi.org/10.1063/1.1482796
45.
45.Y. Noel, M. Llunell, R. Orlando, P. D’Arco, and R. Dovesi, Phys. Rev. B 66, 214107 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.214107
46.
46.X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035105
47.
47.P. Gopal and N. A. Spaldin, J. Electron. Mater. 35, 538 (2006).
http://dx.doi.org/10.1007/s11664-006-0096-y
48.
48.Z. C. Tu and X. Hu, Phys. Rev. B 74, 035434 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.035434
49.
49.W. A. Harrison, Phys. Rev. B 74, 205101 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205101
50.
50.Y. Zheng, E. Shi, J. Chen, T. Zhang, and L. Song, J. Phys.: Conf. Ser. 29, 61 (2006).
http://dx.doi.org/10.1088/1742-6596/29/1/011
51.
51.J. Xin, Y. Zheng, and E. Shi, Appl. Phys. Lett. 91, 112902 (2007).
http://dx.doi.org/10.1063/1.2783279
52.
52.F. Tasnádi, B. Alling, C. Höglund, G. Wingqvist, J. Birch, L. Hultman, and I. A. Abrikosov, Phys. Rev. Lett. 104, 137601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.137601
53.
53.R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.1651
54.
54.M. A. Migliorato, D. Powell, A. G. Cullis, T. Hammerschmidt, and G. P. Srivastava, Phys. Rev. B 74, 245332 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.245332
55.
55.R. Garg, A. Hüe, V. Haxha, M. A. Migliorato, T. Hammerschmidt, and G. P. Srivastava, Appl. Phys. Lett. 95, 041912 (2009).
http://dx.doi.org/10.1063/1.3194779
56.
56.J. Even, F. Dorë, C. Cornet, L. Pedesseau, A. Schliwa, and D. Bimberg, Appl. Phys. Lett. 91, 122112 (2007).
http://dx.doi.org/10.1063/1.2787894
57.
57.S. W. P. van Sterkenburg, J. Phys. D: Appl. Phys. 25, 996 (1992).
http://dx.doi.org/10.1088/0022-3727/25/6/017
58.
58.I. L. Guy, S. Muensit, and E. M. Goldys, Appl. Phys. Lett. 75, 3641 (1999).
http://dx.doi.org/10.1063/1.125414
59.
59.I. Kornev, M. Willatzen, B. Lassen, and L. C. Lew Yan Voon, AIP Conf. Proc. 1199, 71 (2010).
http://dx.doi.org/10.1063/1.3295559
60.
60.B. Jogai, J. D. Albrecht, and E. Pan, J. Appl. Phys. 94, 3984 (2003).
http://dx.doi.org/10.1063/1.1603953
61.
61.B. Jogai, J. D. Albrecht, and E. Pan, J. Appl. Phys. 94, 6566 (2003).
http://dx.doi.org/10.1063/1.1620378
62.
62.U. M. E. Christmas, A. D. Andreev, and D. A. Faux, J. Appl. Phys. 98, 073522 (2005).
http://dx.doi.org/10.1063/1.2077843
63.
63.M. Willatzen, B. Lassen, L. C. Lew Yan Voon, and R. Melnik, J. Appl. Phys. 100, 024302 (2006).
http://dx.doi.org/10.1063/1.2214361
64.
64.D. L. Smith, Solid State Commun. 57, 919 (1986).
http://dx.doi.org/10.1016/0038-1098(86)90924-5
65.
65.D. L. Smith and C. Mailhiot, J. Appl. Phys. 63, 2717 (1988).
http://dx.doi.org/10.1063/1.340965
66.
66.J. Cibert, R. André, C. Bodin, L. S. Dang, G. Feuillet, and P. H. Jouneau, Phys. Scr. 1993, 487 (1993).
http://dx.doi.org/10.1088/0031-8949/1993/T49B/019
67.
67.L. Duggen, M. Willatzen, and B. Lassen, Phys. Rev. B 78, 205323 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.205323
68.
68.E. Caridi, T. Chang, K. Goossen, and L. Eastman, Appl. Phys. Lett. 56, 659 (1990).
http://dx.doi.org/10.1063/1.102729
69.
69.J. I. Izpura, J. Sánchez, J. Sánchez-Rojas, and E. Muñoz, Microelectron. J. 30, 439 (1999).
http://dx.doi.org/10.1016/S0026-2692(98)00149-9
70.
70.P. Ballet, P. Disseix, J. Leymarie, A. Vasson, A. -M. Vasson, and R. Grey, Phys. Rev. B 59, R5308 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R5308
71.
71.R. A. Hogg, T. A. Fisher, A. R. K. Willcox, D. M. Whittaker, M. S. Skolnick, D. J. Mowbray, J. P. R. David, A. S. Pabla, G. J. Rees, R. Grey, J. Woodhead, J. L. Sanchez-Rojas, G. Hill, M. A. Pate, and P. N. Robson, Phys. Rev. B 48, 8491 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.8491
72.
72.J. L. Sánchez-Rojas, A. Sacedón, F. González-Sanz, E. Calleja, and E. Muñoz, Appl. Phys. Lett. 65, 2042 (1994).
http://dx.doi.org/10.1063/1.112787
73.
73.C. H. Chan, M. C. Chen, H. H. Lin, Y. F. Chen, G. J. Jan, and Y. H. Chen, Appl. Phys. Lett. 72, 1208 (1998).
http://dx.doi.org/10.1063/1.121015
74.
74.S. Cho, A. Majerfeld, A. Sanz-Hervás, J. J. Sánchez, J. L. Sánchez-Rojas, and I. Izpura, J. Appl. Phys. 90, 915 (2001).
http://dx.doi.org/10.1063/1.1379563
75.
75.S. Cho, J. Kim, A. Sanz-Hervás, A. Majerfeld, G. Patriarche, and B. W. Kim, Phys. Status Solidi A 195, 260 (2003).
http://dx.doi.org/10.1002/pssa.200306269
76.
76.S. Cho, A. Sanz-Hervás, J. Kim, A. Majerfeld, and B. W. Kim, J. Appl. Phys. 96, 1909 (2004).
http://dx.doi.org/10.1063/1.1765862
77.
77.S. P. Łepkowski, Phys. Rev. B 77, 155327 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.155327
78.
78.M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.11969
79.
79.J. H. Davies, J. Appl. Phys. 84, 1358 (1998).
http://dx.doi.org/10.1063/1.368205
80.
80.O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5688
81.
81.E. Pan, J. Appl. Phys. 91, 3785 (2002).
http://dx.doi.org/10.1063/1.1448869
82.
82.E. Pan, J. Appl. Phys. 91, 6379 (2002).
http://dx.doi.org/10.1063/1.1468906
83.
83.T. Saito and Y. Arakawa, Physica E 15, 169 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00515-5
84.
84.S. Schulz, S. Schumacher, and G. Czycholl, Phys. Rev. B 73, 245327 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245327
85.
85.J. Even, F. Doré, C. Cornet, and L. Pedesseau, Phys. Rev. B 77, 085305 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085305
86.
86.T. O. Cheche and Y. -C. Chang, J. Appl. Phys. 104, 083524 (2008).
http://dx.doi.org/10.1063/1.2999639
87.
87.Z. Wei, Y. Zhong-Yuan, and L. Yu-Min, Chin. Phys. B 19, 067302 (2010).
http://dx.doi.org/10.1088/1674-1056/19/6/067302
88.
88.S. B. Healy and E. P. O’Reilly, J. Phys.: Conf. Ser. 245, 012022 (2010).
http://dx.doi.org/10.1088/1742-6596/245/1/012022
89.
89.B. Lassen, M. Willatzen, D. Barettin, R. V. N. Melnik, and L. C. Lew Yan Voon, J. Phys.: Conf. Ser. 107, 012008 (2008).
http://dx.doi.org/10.1088/1742-6596/107/1/012008
90.
90.A. D. Andreev and E. P. O’Reilly, Phys. Rev. B 62, 15851 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.15851
91.
91.E. O. Melezhik and O. A. Korotchenkov, J. Appl. Phys. 102, 013503 (2007).
http://dx.doi.org/10.1063/1.2751397
92.
92.B. Lassen, D. Barettin, M. Willatzen, and L. C. Lew Yan Voon, Microelectron. J. 39, 1226 (2008).
http://dx.doi.org/10.1016/j.mejo.2008.01.059
93.
93.T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 36, L382 (1997).
http://dx.doi.org/10.1143/JJAP.36.L382
94.
94.J. Seo Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, and A. Hangleiter, Phys. Rev. B 57, R9435 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R9435
95.
95.G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, Appl. Phys. Lett. 68, 2541 (1996).
http://dx.doi.org/10.1063/1.116177
96.
96.A. Bykhovski, B. Gelmont, and M. Shur, J. Appl. Phys. 74, 6734 (1993).
http://dx.doi.org/10.1063/1.355070
97.
97.V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.8849
98.
98.J. Galczak, R. P. Sarzala, and W. Nakwaski, Physica E 25, 504 (2005).
http://dx.doi.org/10.1016/j.physe.2004.08.002
99.
99.D. Balaz, K. Kalna, M. Kuball, M. J. Uren, and A. Asenov, Phys. Status Solidi C 6, S1007 (2009).
http://dx.doi.org/10.1002/pssc.200880858
100.
100.I. P. Ipatova, V. G. Malyshkin, and V. A. Shchukin, J. Appl. Phys. 74, 7198 (1993).
http://dx.doi.org/10.1063/1.355037
101.
101.L. C. Lew Yan Voon, M. Willatzen, B. Lassen, and R. Melnik, Proceedings of International Symposium on Advanced Dielectric Materials and Electronic Devices, (Cincinnati, 2006 Vol. 1), p. 631.
102.
102.T. Makino, Y. Segawa, A. Ohtomo, K. Tamura, T. Yasuda, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 79, 1282 (2001).
http://dx.doi.org/10.1063/1.1398328
103.
103.T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Appl. Phys. Lett. 81, 2355 (2002).
http://dx.doi.org/10.1063/1.1507606
104.
104.C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, and C. Deparis, Phys. Rev. B 72, 241305 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.241305
105.
105.S. -H. Park and D. Ahn, Appl. Phys. Lett. 94, 083507 (2009).
http://dx.doi.org/10.1063/1.3090490
106.
106.F. Benharrats, K. Zitouni, A. Kadri, and B. Gil, Superlattices Microstruct. 47, 592 (2010).
http://dx.doi.org/10.1016/j.spmi.2010.01.007
107.
107.S. Sadofev, S. Kalusniak, J. Puls, P. Schäfer, S. Blumstengel, and F. Henneberger, Appl. Phys. Lett. 91, 231103 (2007).
http://dx.doi.org/10.1063/1.2822889
108.
108.T. Bretagnon, P. Lefebvre, T. Guillet, T. Taliercio, B. Gil, and C. Morhain, Appl. Phys. Lett. 90, 201912 (2007).
http://dx.doi.org/10.1063/1.2740576
109.
109.S.-H. Park and D. Ahn, Appl. Phys. Lett. 90, 013505 (2007).
http://dx.doi.org/10.1063/1.2420795
110.
110.M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Brückner, and F. Scholz, Appl. Phys. Lett. 89, 242112 (2006).
http://dx.doi.org/10.1063/1.2405866
111.
111.L. Duggen and M. Willatzen, Phys. Rev. B 82, 205303 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205303
112.
112.C. -N. Chen, S. -H. Chang, M. -L. Hung, J. -C. Chiang, I. Lo, W. -T. Wang, M. -H. Gau, H. -F. Kao, and M. -E. Lee, J. Appl. Phys. 101, 043104 (2007).
http://dx.doi.org/10.1063/1.2423139
113.
113.Y. Li, J. Xiang, F. Qian, S. Gradeak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, Nano Lett. 6, 1468 (2006).
http://dx.doi.org/10.1021/nl060849z
114.
114.G. Morello, F. Della Sala, L. Carbone, L. Manna, G. Maruccio, R. Cingolani, and M. De Giorgi, Phys. Rev. B 78, 195313 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.195313
115.
115.M. A. Mastro, B. Simpkins, G. T. Wang, J. Hite, C. R. Eddy, Jr., H. -Y. Kim, J. Ahn, and J. Kim, Nanotechnology 21, 145205 (2010).
http://dx.doi.org/10.1088/0957-4484/21/14/145205
116.
116.A. V. Desai and M. A. Haque, Appl. Phys. Lett. 91, 183106 (2007).
http://dx.doi.org/10.1063/1.2805027
117.
117.F. Widmann, J. Simon, B. Daudin, G. Feuillet, J. L. Rouvière, N. T. Pelekanos, and G. Fishman, Phys. Rev. B 58, R15989 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R15989
118.
118.A. D. Andreev and E. P. OReilly, Physica E, 10, 553 (2001).
http://dx.doi.org/10.1016/S1386-9477(00)00297-6
119.
119.V. A. Fonoberov and A. A. Balandin, J. Appl. Phys. 94, 7178 (2003).
http://dx.doi.org/10.1063/1.1623330
120.
120.V. A. Fonoberov and A. A. Balandin, J. Vac. Sci. Technol. 22, 2190 (2004).
http://dx.doi.org/10.1116/1.1768188
121.
121.D. P. Williams, A. D. Andreev, E. P. O’Reilly, and D. A. Faux, Phys. Rev. B 72, 235318 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.235318
122.
122.M. Winkelnkemper, A. Schliwa, and D. Bimberg, Phys. Rev. B 74, 155322 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.155322
123.
123.S. Schulz, A. Berube, and E. P. O’Reilly, Phys. Rev. B 79, 081401 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.081401
124.
124.O. Marquardt, T. Hickel, and J. Neugebauer, J. Appl. Phys. 106, 083707 (2009).
http://dx.doi.org/10.1063/1.3246864
125.
125.J. Even, Appl. Phys. Lett. 94, 102105 (2009).
http://dx.doi.org/10.1063/1.3097232
126.
126.H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Kashiwaya, S. Niki, Y. Chiba, T. Wakamatsu, and H. Kanie, Appl. Phys. Lett. 93, 202104 (2008).
http://dx.doi.org/10.1063/1.3028338
127.
127.I. Brown, P. Blood, P. Smowton, J. Thomson, S. Olaizola, A. Fox, P. Parbrook, and W. Chow, IEEE J. Quantum Electron. 42, 1202 (2006).
http://dx.doi.org/10.1109/JQE.2006.883472
128.
128.A. F. M. Anwar, R. T. Webster, and K. V. Smith, Appl. Phys. Lett. 88, 203510 (2006).
http://dx.doi.org/10.1063/1.2203739
129.
129.M. Willatzen, B. Lassen, and L. C. Lew Yan Voon, J. Appl. Phys. 100, 124309 (2006).
http://dx.doi.org/10.1063/1.2401028
130.
130.C. -K. Sun, S. -W. Chu, S. -P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 77, 2331 (2000).
http://dx.doi.org/10.1063/1.1316776
131.
131.M. Willatzen, L. Wang, and L. C. Lew Yan Voon, Superlattices Microstruct. 43, 436 (2008).
http://dx.doi.org/10.1016/j.spmi.2007.07.009
132.
132.J. Wang, J. B. Jeon, Y. M. Sirenko, and K. W. Kim, IEEE Photonics Technol. Lett. 9, 728 (1997).
http://dx.doi.org/10.1109/68.584971
133.
133.O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, J. Appl. Phys. 87, 334 (2000).
http://dx.doi.org/10.1063/1.371866
134.
134.S. -H. Park and S. -L. Chuang, J. Appl. Phys. 87, 353 (2000).
http://dx.doi.org/10.1063/1.371915
135.
135.B. Jogai, J. Appl. Phys. 91, 3721 (2002).
http://dx.doi.org/10.1063/1.1452773
136.
136.C. Morhain, X. Tang, M. Teisseire-Doninelli, B. Lo, M. Laügt, J. -M. Chauveau, B. Vinter, O. Tottereau, P. Vennéguès, C. Deparis, and G. Neu, Superlattices Microstruct. 38, 455 (2005).
http://dx.doi.org/10.1016/j.spmi.2005.08.055
137.
137.M. F. Schubert and E. F. Schubert, Appl. Phys. Lett. 96, 131102 (2010).
http://dx.doi.org/10.1063/1.3373610
138.
138.C. Cornet, A. Schliwa, J. Even, F. Doré, C. Celebi, A. Létoublon, E. Macé, C. Paranthoën, A. Simon, P. M. Koenraad, N. Bertru, D. Bimberg, and S. Loualiche, Phys. Rev. B 74, 035312 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.035312
139.
139.Z. L. Wang, Mater. Today 10, 20 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70076-7
140.
140.Z. L. Wang, Adv. Mater. 19, 889 (2007).
http://dx.doi.org/10.1002/adma.200602918
141.
141.Z. L. Wang, J. Phys. Chem. Lett. 1, 1388 (2010).
http://dx.doi.org/10.1021/jz100330j
142.
142.Z. L. Wang and J. Song, Science 312, 242 (2006).
http://dx.doi.org/10.1126/science.1124005
143.
143.J. Song, J. Zhou, and Z. L. Wang, Nano Lett. 6, 1656 (2006).
http://dx.doi.org/10.1021/nl060820v
144.
144.X. Wang, J. Song, J. Liu, and Z. L. Wang, Nano Lett. 6, 2768 (2006).
http://dx.doi.org/10.1021/nl061802g
145.
145.X. Wang, J. Song, J. Liu, and Z. L. Wang, Science 316, 102 (2007).
http://dx.doi.org/10.1126/science.1139366
146.
146.J. X. Cao, X. G. Gong, and R. Q. Wu, Phys. Rev. B 75, 233302 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.233302
147.
147.P. Gao, J. Song, J. Liu, and Z. Wang, Adv. Mater. 19, 67 (2007).
http://dx.doi.org/10.1002/adma.200601162
148.
148.Y. Gao and Z. L. Wang, Nano Lett. 7, 2499 (2007).
http://dx.doi.org/10.1021/nl071310j
149.
149.J. He, C. Hsin, J. Liu, L. Chen, and Z. Wang, Adv. Mater. 19, 781 (2007).
http://dx.doi.org/10.1002/adma.200601908
150.
150.C. S. Lao, Q. Kuang, Z. L. Wang, M. -C. Park, and Y. Deng, Appl. Phys. Lett. 90, 262107 (2007).
http://dx.doi.org/10.1063/1.2748097
151.
151.C. Li, W. Guo, Y. Kong, and H. Gao, Appl. Phys. Lett. 90, 033108 (2007).
http://dx.doi.org/10.1063/1.2430686
152.
152.W. S. Su, Y. F. Chen, C. L. Hsiao, and L. W. Tu, Appl. Phys. Lett. 90, 063110 (2007).
http://dx.doi.org/10.1063/1.2472539
153.
153.S. Wang, K. H. Lam, C. L. Sun, K. W. Kwok, H. L. W. Chan, M. S. Guo, and X. -Z. Zhao, Appl. Phys. Lett. 90, 113506 (2007).
http://dx.doi.org/10.1063/1.2713357
154.
154.Y. -F. Lin, J. Song, Y. Ding, S. -Y. Lu, and Z. L. Wang, Appl. Phys. Lett. 92, 022105 (2008).
http://dx.doi.org/10.1063/1.2831901
155.
155.K. H. Liu, P. Gao, Z. Xu, X. D. Bai, and E. G. Wang, Appl. Phys. Lett. 92, 213105 (2008).
http://dx.doi.org/10.1063/1.2936080
156.
156.M. A. Schubert, S. Senz, M. Alexe, D. Hesse, and U. Gösele, Appl. Phys. Lett. 92, 122904 (2008).
http://dx.doi.org/10.1063/1.2903114
157.
157.M. Alexe, S. Senz, M. A. Schubert, D. Hesse, and U. Gösele, Adv. Mater. 20, 4021 (2008).
http://dx.doi.org/10.1002/adma.200800272
158.
158.Z. L. Wang, Adv. Mater. 21, 1311 (2009).
http://dx.doi.org/10.1002/adma.200802638
159.
159.F. Cottone, H. Vocca, and L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.080601
160.
160.S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, Nat. Nanotechnol. 5, 366 (2010).
http://dx.doi.org/10.1038/nnano.2010.46
161.
161.J. Zhou, Z. Wang, A. Grots, and X. He, Solid State Commun. 144, 118 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.08.011
162.
162.Z. L. Wang, X. Wang, J. Song, J. Liu, and Y. Gao, IEEE Pervasive Comput. 7, 49 (2008).
http://dx.doi.org/10.1109/MPRV.2008.14
163.
163.Z. Z. Shao, L. Y. Wen, D. M. Wu, X. F. Wang, X. A. Zhang, and S. L. Chang, J. Phys. D: Appl. Phys. 43, 245403 (2010).
http://dx.doi.org/10.1088/0022-3727/43/24/245403
164.
164.S. C. Masmanidis, R. B. Karabalin, I. D. Vlaminck, G. Borghs, M. R. Freeman, and M. L. Roukes, Science 317, 780 (2007).
http://dx.doi.org/10.1126/science.1144793
165.
165.L. Gammaitoni, I. Neri, and H. Vocca, Appl. Phys. Lett. 94, 164102 (2009).
http://dx.doi.org/10.1063/1.3120279
166.
166.D. B. Carstensen, T. Amby-Christensen, M. Willatzen, and P. V. Santos, J. Phys. Chem. Lett. 19, 1 (2008).
167.
167.C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, San Diego, 1998).
168.
168.T. Sogawa, H. Sanada, H. Gotoh, H. Yamaguchi, S. Miyashita, and P. V. Santos, Phys. Rev. B 80, 075304 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075304
169.
169.J. M. Shilton, V. I. Talyanskii, M. Pepper, D. A. Ritchie, J. E. F. Frost, C. J. B. Ford, C. G. Smith, and G. A. C. Jones, J. Phys.: Condens. Matter 8, L531 (1996).
http://dx.doi.org/10.1088/0953-8984/8/38/001
170.
170.C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, Phys. Rev. Lett. 78, 4099 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4099
171.
171.T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, Phys. Rev. Lett. 87, 276601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.276601
172.
172.G. Giavaras, Phys. Rev. B 81, 073302 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.073302
173.
173.F. Buscemi, P. Bordone, and A. Bertoni, Phys. Rev. B 81, 045312 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045312
174.
174.R. Rodriquez, D. K. L. Oi, M. Kataoka, C. H. W. Barnes, T. Ohshima, and A. K. Ekert, Phys. Rev. B 72, 085329 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085329
175.
175.C. H. W. Barnes, J. M. Shilton, and A. M. Robinson, Phys. Rev. B 62, 8410 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.8410
176.
176.P. Thalmeier, B. Dóra, and K. Ziegler, Phys. Rev. B 81, 041409(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.041409
177.
177.B. Luthi, Physical Acoustics in the Solid State (Springer, Berlin, 2004).
178.
178.A. Wixforth, J. P. Kotthaus, and G. Weimann, Phys. Rev. Lett. 56, 2104 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.2104
179.
179.R. L. Willett, M. A. Paalanen, R. R. Ruel, K. W. West, L. N. Pfeiffer, and D. J. Bishop, Phys. Rev. Lett. 65, 112 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.112
180.
180.M. M. de Lima, W. Seidel, F. Alsina, and P. V. Santos, J. Appl. Phys. 94, 7848 (2003).
http://dx.doi.org/10.1063/1.1625419
181.
181.M. M. de Lima, W. Seidel, H. Kostial, and P. V. Santos, J. Appl. Phys. 96, 3494 (2004).
http://dx.doi.org/10.1063/1.1782961
182.
182.A. Gantner, “Mathematical modeling and numerical simulation of piezoelectrical agitated surface acoustic waves,” Ph.D. thesis, University of Augsburg, 2005.
183.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/109/3/10.1063/1.3533402
Loading
/content/aip/journal/jap/109/3/10.1063/1.3533402
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/109/3/10.1063/1.3533402
2011-02-09
2014-07-12

Abstract

Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1–10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the measurements and calculations of the bulk electromechanical coefficients remain challenging. Much of the literature has focused on InGaN/GaN, AlGaN/GaN, ZnMgO/ZnO, and ZnCdO/ZnO quantum wells, and InAs/GaAs and AlGaN/AlN quantum dots for their optoelectronic properties; and work on the bending of nanowires have been mostly for GaN and ZnO nanowires. We hope the present review article will stimulate further research into the field of electromechanical phenomena and help in the development of applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/109/3/1.3533402.html;jsessionid=23h5rwm6ihg8q.x-aip-live-02?itemId=/content/aip/journal/jap/109/3/10.1063/1.3533402&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electromechanical phenomena in semiconductor nanostructures
http://aip.metastore.ingenta.com/content/aip/journal/jap/109/3/10.1063/1.3533402
10.1063/1.3533402
SEARCH_EXPAND_ITEM