1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Understanding junction breakdown in multicrystalline solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/109/7/10.1063/1.3562200
1.
1. O. Breitenstein, J. P. Rakotoniaina, M. H. Al Rifai, and M. Werner, Prog. Photovoltaics 12, 529 (2004).
http://dx.doi.org/10.1002/pip.544
2.
2. J. Bauer, O. Breitenstein, and J.P. Rakotoniaina, Phys. Status Solidi A 204, 2190 (2007).
http://dx.doi.org/10.1002/pssa.200675436
3.
3. S. Mahadevan, S.M. Hardas, and G. Suryan, Phys. Status Solidi A 8, 335 (1971).
http://dx.doi.org/10.1002/pssa.2210080202
4.
4. Y. Kaji, H. Kondo, Y. Takahashi, T. Yamazaki, Y. Uraoka, and T. Fuyuki, Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Orlando (IEEE, Piscataway, NJ, 2005), pp. 13461348.
5.
5. Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus (Wiley, New York, 2003), pp. 297299.
6.
6. M.C. Alonso-García, J.M. Ruiz, and F. Chenlo, Sol. Energy Mater. Sol. Cells 90, 329 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.04.022
7.
7. O. Breitenstein, W. Warta, and M. Langenkamp, Lock-in Thermography - Basics and Use for Evaluating Electronic Devices and Materials, 2nd ed. (Springer, Berlin, 2010).
8.
8. T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, and Y. Uraoka, Appl. Phys. Lett. 86, 262108 (2005).
http://dx.doi.org/10.1063/1.1978979
9.
9. R. Newman, Phys. Rev. 100, 700 (1955).
http://dx.doi.org/10.1103/PhysRev.100.700
10.
10. M. Kasemann, W. Kwapil, M. C. Schubert, H. Habenicht, B. Walter, M. The, S. Kontermann, S. Rein, O. Breitenstein, J. Bauer, A. Lotnyk, B. Michl, H. Nagel, A. Schütt, J. Carstensen, H. Föll, T. Trupke, Y. Augarten, H. Kampwerth, R. A. Bardos, S. Pingel, J. Berghold, W. Warta, and S. W. Glunz, Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, San Diego (IEEE, Piscataway, NJ, 2008), paper No. 148.
11.
11. J.-M. Wagner, J. Bauer, A. Lotnyk, and O. Breitenstein, Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain (WIP, Munich, 2008), pp. 11641168.
12.
12. O. Breitenstein, J. Bauer, J.-M. Wagner, and A. Lotnyk, Prog. Photovoltaics 16, 679 (2008).
http://dx.doi.org/10.1002/pip.848
13.
13. D. Lausch, K. Petter, H. v. Wenckstern, and M. Grundmann, Phys. Status Solidi (RRL) 3, 70 (2009).
http://dx.doi.org/10.1002/pssr.200802264
14.
14. A. G. Chynoweth and K. G. McKay, Phys. Rev. 102, 369 (1956).
http://dx.doi.org/10.1103/PhysRev.102.369
15.
15. W. Haecker, Phys. Status Solidi A 25, 301 (1974).
http://dx.doi.org/10.1002/pssa.2210250129
16.
16. T. Figielskiand and A. Torun, in Proceedings of the 6th International Conference on the Physics of Semiconductors (Pergamon, London, 1962), pp. 863868.
17.
17. A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, IEEE Trans. Electron. Devices 40, 577 (1993).
http://dx.doi.org/10.1109/16.199363
18.
18. J. Bude, N. Sano, and A. Yoshii, Phys. Rev. B 45, 5848 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.5848
19.
19. O. Breitenstein, J. Bauer, M. Kittler, T. Arguirov, and W. Seifert, Scanning 30, 331 (2008).
http://dx.doi.org/10.1002/sca.20112
20.
20. S. M. Sze and G. Gibbons, Solid-State Electron. 9, 831 (1966).
http://dx.doi.org/10.1016/0038-1101(66)90033-5
21.
21. W. Kwapil, M. Kasemann, P. Gundel, M.C. Schubert, W. Warta, P. Bronsveld, and G. Coletti, J. Appl. Phys. 106, 063530 (2009).
http://dx.doi.org/10.1063/1.3224908
22.
22. J. Bauer, Ph.D. thesis, Martin Luther University Halle–Wittenberg, 2009, http://digital.bibliothek.uni-halle.de/hs/urn/urn:nbn:de:gbv:3:4-1951
23.
23. K. Bothe, K. Ramspeck, D. Hinken, C. Schinke, J. Schmidt, S. Herlufsen, R. Brendel, J. Bauer, J.-M. Wagner, N. Zakharov, and O. Breitenstein, J. Appl. Phys. 106, 104510 (2009).
http://dx.doi.org/10.1063/1.3256199
24.
24. D. Lausch, K. Petter, R. Bakowskie, C. Czekalla, J. Lenzner, H. v. Wenckstern, and M. Grundmann, Appl. Phys. Lett. 97, 073506 (2010).
http://dx.doi.org/10.1063/1.3480415
25.
25. J. W. Bishop, Solar Cells 26, 335 (1989).
http://dx.doi.org/10.1016/0379-6787(89)90093-8
26.
26. A. G. Chynoweth and K. G. McKay, Phys. Rev. 106, 418 (1957).
http://dx.doi.org/10.1103/PhysRev.106.418
27.
27. N. Usami, K. Kutsukake, K. Fujiwara, I. Yonenaga, and K. Nakajima, Appl. Phys. Express 1, 075001 (2008).
http://dx.doi.org/10.1143/APEX.1.075001
28.
28. J.-M. Wagner, J. Bauer, and O. Breitenstein, Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany (WIP, Munich, 2009), pp. 925929.
29.
29. T. Uberg Nærland, L. Arnberg, and A. Holt, Prog. Photovoltaics 17, 289 (2009).
http://dx.doi.org/10.1002/pip.876
30.
30. W. Kwapil, P. Gundel, M. C. Schubert, F. D. Heinz, W. Warta, E. R. Weber, A. Goetzberger, and G. Martinez-Criado, Appl. Phys. Lett. 95, 232113 (2009).
http://dx.doi.org/10.1063/1.3272682
31.
31. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988).
32.
32. M. Schneemann, A. Helbig, T. Kirchartz, R. Carius, and U. Rau, Phys. Status Solidi A 207, 2597 (2010).
http://dx.doi.org/10.1002/pssa.201026309
33.
33. M. Schneemann, T. Kirchartz, R. Carius, U. Rau, and A. Helbig, Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain (WIP, Munich, 2010), pp. 2428.
34.
34. J. Bauer, J.-M. Wagner, A. Lotnyk, H. Blumtritt, B. Lim, J. Schmidt, and O. Breitenstein, Phys. Status Solidi (RRL) 3, 40 (2009).
http://dx.doi.org/10.1002/pssr.200802250
35.
35. O. Breitenstein, J. Bauer, J.-M. Wagner, N. Zakharov, H. Blumtritt, A. Lotnyk, M. Kasemann, W. Kwapil, and W. Warta, IEEE Trans. Electron Devices 57, 2227 (2010).
http://dx.doi.org/10.1109/TED.2010.2053866
36.
36. C. Modanese, M. Di Sabatino, A.-K. Søiland, K. Peter, and L. Arnberg, Prog. Photovoltaics 19, 45 (2011).
http://dx.doi.org/10.1002/pip.986
37.
37. M. Wagner, B. Gründig-Wendrock, P. Palinginis, and C. Knopf, Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg (WIP, Munich, 2009), pp. 20282031.
38.
38. W. Kwapil, M. Wagner, M. C. Schubert, and W. Warta, J. Appl. Phys. 108, 023708 (2010).
http://dx.doi.org/10.1063/1.3463332
39.
39. O. Breitenstein, P. Altermatt, K. Ramspeck, and A. Schenk, Proceedings of the 21st European Photovoltaics Energy Conference, Dresden, Germany (WIP, Munich, 2006), pp. 625628.
40.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/109/7/10.1063/1.3562200
Loading
/content/aip/journal/jap/109/7/10.1063/1.3562200
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/109/7/10.1063/1.3562200
2011-04-12
2014-07-23

Abstract

Extensive investigations on industrial multicrystalline silicon solar cells have shown that, for standard 1 Ω cm material, acid-etched texturization, and in absence of strong ohmic shunts, there are three different types of breakdown appearing in different reverse bias ranges. Between −4 and −9 V there is early breakdown (type 1), which is due to Al contamination of the surface. Between −9 and −13 V defect-induced breakdown (type 2) dominates, which is due to metal-containing precipitates lying within recombination-active grain boundaries. Beyond −13 V we may find in addition avalanche breakdown (type 3) at etch pits, which is characterized by a steep slope of the I-Vcharacteristic,avalanche carrier multiplication by impact ionization, and a negative temperature coefficient of the reverse current. If instead of acid-etching alkaline-etching is used, all these breakdown classes also appear, but their onset voltage is enlarged by several volts. Also for cells made from upgraded metallurgical grade material these classes can be distinguished. However, due to the higher net doping concentration of this material, their onset voltage is considerably reduced here.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/109/7/1.3562200.html;jsessionid=aar9kcgfhsfq9.x-aip-live-02?itemId=/content/aip/journal/jap/109/7/10.1063/1.3562200&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Understanding junction breakdown in multicrystalline solar cells
http://aip.metastore.ingenta.com/content/aip/journal/jap/109/7/10.1063/1.3562200
10.1063/1.3562200
SEARCH_EXPAND_ITEM