1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Schottky barriers in carbon nanotube-metal contacts
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/110/11/10.1063/1.3664139
1.
1. G. E. Moore, Electronics 38, 114 (1965).
2.
2. G. E. Moore, IEEE IEDM Tech. Digest 21, 11 (1975).
3.
3. S. Iijima, Nature (London) 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
4.
4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
5.
5. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
6.
6. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
http://dx.doi.org/10.1126/science.1150878
7.
7. J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, Nat. Nanotechnol. 5, 190 (2010).
http://dx.doi.org/10.1038/nnano.2010.8
8.
8. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 (2009).
http://dx.doi.org/10.1126/science.1167130
9.
9. X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 101, 026801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026801
10.
10. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).
http://dx.doi.org/10.1038/nnano.2010.89
11.
11. T. Duerkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Nano Lett. 4, 35 (2004).
http://dx.doi.org/10.1021/nl034841q
12.
12. Z. Y. Zhang, S. Wang, L. Ding, X. L. Liang, H. L. Xu, J. Shen, Q. Chen, R. L. Cui, Y. Li, and L. M. Peng, Appl. Phys. Lett. 92, 133117 (2008).
13.
13. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature (London) 424, 654 (2003).
http://dx.doi.org/10.1038/nature01797
14.
14. S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).
http://dx.doi.org/10.1038/363603a0
15.
15. X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, Nano Lett. 9, 3137 (2009).
http://dx.doi.org/10.1021/nl901260b
16.
16. X. Zhou, “Carbon nanotube transistors, sensors, and beyond,” Ph.D. dissertation (Cornell University, 2008).
17.
17. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.1804
18.
18. J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998).
http://dx.doi.org/10.1038/34139
19.
19. R. B. Weisman and S. M. Bachilo, Nano Lett. 3, 1235 (2003).
http://dx.doi.org/10.1021/nl034428i
20.
20. S. Ilani and P. L. McEuen, Annu. Rev. Condens. Matter Phys. 1, 1 (2010).
http://dx.doi.org/10.1146/annurev-conmatphys-070909-103928
21.
21. E. Minot, “Tuning the band structure of carbon nanotubes,” Ph.D. dissertation (Cornell University, 2004).
22.
22. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1932
23.
23. E. Minot, Y. Yaish, V. Sazonova, J. Park, M. Brink, and P. McEuen, Phys. Rev. Lett. 90 156401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.156401
24.
24. M. Huang, Y. Wu, B. Chandra, H. Yan, Y. Shan, T. F. Heinz, and J. Hone, Phys. Rev. Lett. 100, 136803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136803
25.
25. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett. 92, 106804 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.106804
26.
26. J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Uestuenel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, Nano Lett. 4, 517 (2004).
http://dx.doi.org/10.1021/nl035258c
27.
27. R. V. Seidel, A. P. Graham, J. Kretz, B. Rajasekharan, G. S. Duesberg, M. Liebau, E. Unger, F. Kreupl, and W. Hoenlein, Nano Lett. 5, 147 (2005).
http://dx.doi.org/10.1021/nl048312d
28.
28. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, Nature Mater. 1, 241 (2002).
http://dx.doi.org/10.1038/nmat769
29.
29. S. J. Tans, R. M. Verschueren, and C. Dekker, Nature (London) 393, 49 (1998).
http://dx.doi.org/10.1038/29954
30.
30. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).
http://dx.doi.org/10.1063/1.122477
31.
31. C. Zhou, J. Kong, and H. Dai, Appl. Phys. Lett. 76, 1597 (2000).
http://dx.doi.org/10.1063/1.126107
32.
32. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, Phys. Rev. Lett. 89, 106801 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.106801
33.
33. V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Appl. Phys. Lett. 80, 2773 (2002).
http://dx.doi.org/10.1063/1.1467702
34.
34. J. Appenzeller, M. Radosaveljević, J. Knoch, and P. Avouris, Phys. Rev. Lett. 92, 048301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.048301
35.
35. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. Chan, J. Tersoff, and P. Avouris, Phys. Rev. Lett. 87, 256805 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.256805
36.
36. Y. Chen and M. S. Fuhrer, Nano Lett. 6, 2158 (2006).
http://dx.doi.org/10.1021/nl061379b
37.
37. C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, Adv. Mater. 21, 3087 (2009).
http://dx.doi.org/10.1002/adma.200900550
38.
38. J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.677
39.
39. P. Avouris, Z. Chen, and V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007).
http://dx.doi.org/10.1038/nnano.2007.300
40.
40. P. Avouris, Phys. Today 62, 34 (2009).
http://dx.doi.org/10.1063/1.3074261
41.
41. A. Javey and J. Kong, Carbon Nanotube Electronics (Springer, New York, 2009).
42.
42. C. Rutherglen, D. Jain, and P. Burke, Nat. Nanotechnol. 4, 811 (2009).
http://dx.doi.org/10.1038/nnano.2009.355
43.
43. E. Cobas and M. S. Fuhrer, Appl. Phys. Lett. 93, 043120 (2008).
http://dx.doi.org/10.1063/1.2939095
44.
44. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Clarendon Press, 1988).
45.
45. W. Monch, Rep. Prog. Phys. 53, 221 (1990).
http://dx.doi.org/10.1088/0034-4885/53/3/001
46.
46. W. Schottky, Phys. Z. 41, 570 (1940).
47.
47. N. F. Mott, Proc. Cambridge Philos. Soc. 34, 568 (1938).
http://dx.doi.org/10.1017/S0305004100020570
48.
48. A. Cowley and S. Sze, J. Appl. Phys. 36, 3212 (1965).
http://dx.doi.org/10.1063/1.1702952
49.
49. V. Heine, Phys. Rev. 138, 1689 (1965).
http://dx.doi.org/10.1103/PhysRev.138.A1689
50.
50. S. G. Louie and M. L. Cohen, Phys. Rev. B 13, 2461 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.2461
51.
51. J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.465
52.
52. R. T. Tung, Phys. Rev. Lett. 84, 6078 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6078
53.
53. R. T. Tung, Phys. Rev. B 64, 205310 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.205310
54.
54. J. Piscator, “Influence of electron charge states in nanoelectronic building blocks,” Ph.D. dissertation, (Chalmers University of Technology, 2009).
55.
55. G. Song, M. Y. Ali, and M. Tao, IEEE Electron. Device Lett. 28, 71 (2007).
http://dx.doi.org/10.1109/LED.2006.887942
56.
56. A. Vilan, A. Shanzer, and D. Cahen, Nature (London) 404, 166 (2000).
http://dx.doi.org/10.1038/35004539
57.
57. F. Léonard and J. Tersoff, Phys. Rev. Lett. 84, 4693 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4693
58.
58. F. Léonard and A. A. Talin, Phys. Rev. Lett. 97, 026804 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.026804
59.
59. A. A. Odintsov, Phys. Rev. Lett. 85, 150 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.150
60.
60. T. Nakanishi, A. Bachtold, and C. Dekker, Phys. Rev. B 66, 073307 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.073307
61.
61. D. Jiménez, X. Cartoixà, E. Miranda, J. S. , F. A. Chaves, and S. Roche, Nanotechnology 18, 025201 (2007).
http://dx.doi.org/10.1088/0957-4484/18/2/025201
62.
62. Y. Xue and M. A. Ratner, Phys. Rev. B 70, 205416 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.205416
63.
63. A. Maiti and A. Ricca, Chem. Phys. Lett. 395, 7 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.024
64.
64. J. A. Rodriguez-Manzo, F. Banhart, M. Terrones, H. Terrones, N. Grobert, P. M. Ajayan, B. G. Sumpter, V. Meunier, M. Wang, Y. Bando, and D. Golberg, Proc. Natl. Acad. Sci. USA 106, 4591 (2009).
http://dx.doi.org/10.1073/pnas.0900960106
65.
65. C. Berger, Y. Yi, J. Gezo, P. Poncharal, and W. A. de Heer, New J. Phys. 5, 158 (2003).
http://dx.doi.org/10.1088/1367-2630/5/1/158
66.
66. J. J. Palacios, A. J. Pérez-Jiménez, E. Louis, E. SanFabián, and J. A. Vergés, Phys. Rev. Lett. 90, 106801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.106801
67.
67. Z. Chen, J. Appenzeller, J. Knoch, Y. Lin, and P. Avouris, Nano Lett. 5, 1497 (2005).
http://dx.doi.org/10.1021/nl0508624
68.
68. W. Zhu and E. Kaxiras, Nano Lett. 6, 1415 (2006).
http://dx.doi.org/10.1021/nl0604311
69.
69. T. Meng, C. Wang, and S. Wang, J. Appl. Phys. 102, 013709 (2007).
http://dx.doi.org/10.1063/1.2748716
70.
70. W. Zhu and E. Kaxiras, Appl. Phys. Lett. 89, 243107 (2006b).
http://dx.doi.org/10.1063/1.2405393
71.
71. J. J. Palacios, P. Tarakeshwar, and D. M. Kim, Phys. Rev. B 77, 113403 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.113403
72.
72. V. Vitale, A. Curioni, and W. Andreoni, J. Am. Chem. Soc. 130, 5848 (2008).
http://dx.doi.org/10.1021/ja8002843
73.
73. Y. Zhang, N. Franklin, R. Chen, and H. Dai, Chem. Phys. Lett. 331, 35 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)01162-3
74.
74. S. Dag, O. Gülseren, S. Ciraci, and T. Yildrim, Appl. Phys. Lett. 83, 3180 (2003).
http://dx.doi.org/10.1063/1.1616662
75.
75. Y. He, J. Zhang, S. Hou, Y. Wang, and Z. Yu, Appl. Phys. Lett. 94, 093107 (2009).
http://dx.doi.org/10.1063/1.3093677
76.
76. Z. Zhang, X. Liang, S. Wang, K. Yao, Y. Hu, Y. Zhu, Q. Chen, W. Zhou, Y. Li, Y. Yao, J. Zhang, and L. M. Peng, Nano Lett. 7, 3603 (2007).
http://dx.doi.org/10.1021/nl0717107
77.
77. B. Shan and K. Cho, Phys. Rev. B 70, 233405 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.233405
78.
78. M. F. ODwyer, R. A. Lewis, and C. Zhang, Microelectron. J. 39, 597 (2008).
http://dx.doi.org/10.1016/j.mejo.2007.07.050
79.
79. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).
80.
80. Y.-C. Tseng and J. Bokor, Appl. Phys. Lett. 96, 013103 (2010).
http://dx.doi.org/10.1063/1.3277182
81.
81. J. Svensson, A. A. Sourab, Y. Tarakanov, D. S. Lee, S. J. Park, S. J. Baek, Y. W. Park, and E. E. B. Campbell, Nanotechnol. 20, 175204 (2009).
http://dx.doi.org/10.1088/0957-4484/20/17/175204
82.
82. C. W. Lee, K. Zhang, H. Tantang, A. Lohani, S. G. Mhaisalkar, L.-J. Li, T. Nagahiro, K. Tamada, and Y. Chen, Appl. Phys. Lett. 91, 103515 (2007).
83.
83. D. Perello, D. J. Bae, M. J. Kim, D. K. Cha, S. Y. Jeong, B. R. Kang, W. J. Yu, Y. H. Lee, and M. Yun, IEEE Trans. Nanotechnol. 8, 355 (2009).
http://dx.doi.org/10.1109/TNANO.2008.2008804
84.
84. D. J. Perello, S. ChuLim, S. J. Chae, I. Lee, M. J. Kim, Y. H. Lee, and M. Yun, ACS Nano 4, 3103 (2010).
http://dx.doi.org/10.1021/nn100328a
85.
85. N. Inami, M. A. Mohamed, E. Shikoh, and A. Fujiwara, Appl. Phys. Lett. 92 (2008).
http://dx.doi.org/10.1063/1.2949075
86.
86. S. Jejurikar, D. Casterman, P. B. Pillai, O. Petrenko, M. M. D. Souza, A. Tahraoui, C. Durkan, and W. I. Milne, Nanotechnol. 21, 215202 (2010).
http://dx.doi.org/10.1088/0957-4484/21/21/215202
87.
87. M. Freitag, J. C. Tsang, A. Bol, D. Yuan, J. Liu, and P. Avouris, Nano Lett. 7, 2037 (2007).
http://dx.doi.org/10.1021/nl070900e
88.
88. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris, Phys. Rev. Lett. 89, 126801 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.126801
89.
89. J. Appenzeller, J. Knoch, M. Radosavljević, and P. Avouris, Phys. Rev. Lett. 92, 226802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.226802
90.
90. W. Kim, A. Javey, R. Tu, J. Cao, Q. Wang, and H. Dai, Appl. Phys. Lett. 87, 173101 (2005).
http://dx.doi.org/10.1063/1.2108127
91.
91. Y. He, J. Zhang, Y. Wang, and Z. Yu, Appl. Phys. Lett. 96, 063108 (2010).
http://dx.doi.org/10.1063/1.3309752
92.
92. Y. Nosho, Y. Ohno, S. Kishimoto, and T. Mizutani, Nanotechnology 17, 3412 (2006).
http://dx.doi.org/10.1088/0957-4484/17/14/011
93.
93. L. Ding, S. Wang, Z. Zhang, Q. Zeng, Z. Wang, T. Pei, L. Yang, X. Liang, J. Shen, Q. Chen, R. Cui, Y. Li, and L.-M. Peng, Nano Lett. 9, 4209 (2009).
http://dx.doi.org/10.1021/nl9024243
94.
94. J. Knoch and J. Appenzeller, Phys. Status Solidi 205, 679 (2008).
http://dx.doi.org/10.1002/pssa.200723528
95.
95. Y. Nosho, Y. Ohno, S. Kishimoto, and T. Mizutani, Appl. Phys. Lett. 86, 073105 (2005).
http://dx.doi.org/10.1063/1.1865343
96.
96. S. Nakamura, M. Ohishi, M. Shiraishi, T. Takenobu, and Y. Iwasa, Appl. Phys. Lett. 89, 013112 (2006).
97.
97. A. D. Franklin and Z. Chen, Nat. Nanotechnol. 5, 858 (2010).
http://dx.doi.org/10.1038/nnano.2010.220
98.
98. H. Michaelson, J. Appl. Phys. 48, 4729 (1977).
http://dx.doi.org/10.1063/1.323539
99.
99. D. Casterman, M. M. D. Souza, A. Tahraoui, C. Durkan, and W. I. Milne, Phys. Rev. B 79, 125407 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.125407
100.
100. S. Moon, S.-G. Lee, W. Song, J. S. Lee, N. Kim, J. Kim, and N. Park, Appl. Phys. Lett. 90, 092113 (2007).
http://dx.doi.org/10.1063/1.2709934
101.
101. D. J. Perello, W. J. Yu, D. J. Bae, S. J. Chae, M. J. Kim, Y. H. Lee, and M. Yun, J. Appl. Phys. 105 124309 (2009).
http://dx.doi.org/10.1063/1.3151916
102.
102. R. W. Strayer, W. Mackie, and L. W. Swanson, Surf. Sci. 34, 225 (1973).
http://dx.doi.org/10.1016/0039-6028(73)90117-9
103.
103. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199906)11:8<>1.0.CO;2-I
104.
104. N. Park and S. Hong, Phys. Rev. B 72, 045408 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045408
105.
105. X. Cui, M. Freitag, R. Martel, L. Brus, and P. Avouris, Nano Lett. 3, 783 (2003).
http://dx.doi.org/10.1021/nl034193a
106.
106. S. Suzuki, C. Bower, Y. Watanabe, and O. Zhou, Appl. Phys. Lett. 76, 4007 (2000).
http://dx.doi.org/10.1063/1.126849
107.
107. J. P. Sun, Z. X. Zhang, S. M. Hou, G. M. Zhang, Z. N. Gu, X. Y. Zhao, W. M. Liu, and Z. Q. Xue, Appl. Phys. A 75, 479 (2002).
http://dx.doi.org/10.1007/s003390201403
108.
108. M. Shiraishi and M. Ata, Carbon 39, 1913 (2001).
http://dx.doi.org/10.1016/S0008-6223(00)00322-5
109.
109. M. Freitag, M. Radosavljevic, Y. Zhou, A. T. Johnson, and W. F. Smith, Appl. Phys. Lett. 79, 3326 (2001).
http://dx.doi.org/10.1063/1.1419055
110.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/11/10.1063/1.3664139
Loading
/content/aip/journal/jap/110/11/10.1063/1.3664139
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/110/11/10.1063/1.3664139
2011-12-08
2014-07-30

Abstract

Semiconducting carbon nanotubes(CNTs) have several properties that are advantageous for field effect transistors such as high mobility, good electrostatics due to their small diameter allowing for aggressive gate length scaling and capability to withstand high current densities. However, in spite of the exceptional performance of single transistors only a few simple circuits and logic gates using CNTs have been demonstrated so far. One of the major obstacles for large scale integration of CNTs is to reliably fabricate p-type and n-type ohmic contacts. To achieve this, the nature of Schottky barriers that often form between metals and small diameter CNTs has to be fully understood. However, since experimental techniques commonly used to study contacts to bulk materials cannot be exploited and studies often have been performed on only single or a few devices there is a large discrepancy in the Schottky barrier heights reported and also several contradicting conclusions. This paper presents a comprehensive review of both theoretical and experimental results on CNT-metal contacts. The main focus is on comparisons between theoretical predictions and experimental results and identifying what needs to be done to gain further understanding of Schottky barriers in CNT-metal contacts.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/110/11/1.3664139.html;jsessionid=ihntdjg9ado3.x-aip-live-02?itemId=/content/aip/journal/jap/110/11/10.1063/1.3664139&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Schottky barriers in carbon nanotube-metal contacts
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/11/10.1063/1.3664139
10.1063/1.3664139
SEARCH_EXPAND_ITEM