1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Large bandgaps of two-dimensional phononic crystals with cross-like holes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/110/11/10.1063/1.3665205
1.
1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2059
2.
2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2486
3.
3. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2022
4.
4. C. Q. Chen, J. Z. Cui, H. L. Duan, X. Q. Feng, L. H. He, G. K. Hu, M. J. Huang, Y. Z. Huo, B. H. Ji, B. Liu, X. H. Peng, H. J. Shi, Q. P. Sun, J. X. Wang, Y. S. Wang, H. P. Zhao, Y. P. Zhao, Q. S. Zheng, and W. N. Zou, Acta Mech. Solida Sinica 24, 1 (2011).
http://dx.doi.org/10.1016/S0894-9166(11)60007-4
5.
5. X. Z. Zhou, Y. S. Wang, and Ch. Zhang, J. Appl. Phys. 106, 014903 (2009).
http://dx.doi.org/10.1063/1.3159644
6.
6. R. Min, F. G. Wu, L. H. Zhong, H. L. Zhong, S. Zhong, and Y. L. Liu, J. Phys. D 39, 2272 (2006).
http://dx.doi.org/10.1088/0022-3727/39/10/041
7.
7. Y. Tanaka, Y. Tomoyasu, and S. Tamura, Phys. Rev. B 62, 7387 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.7387
8.
8. T. T. Wu, Z. G. Huang, and S. Y. Liu, Z. Kristallogr. 220, 841 (2005).
http://dx.doi.org/10.1524/zkri.2005.220.9-10.841
9.
9. C. Goffaux and J. P. Vigneron, Phys. Rev. B 64, 075118 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.075118
10.
10. M. Maldovan and E. L. Thomas, Appl. Phys. B 83, 595 (2006).
http://dx.doi.org/10.1007/s00340-006-2241-y
11.
11. N. Zhen, Z. Z. Yan, and Y. S. Wang, Chin. J. Theor. Appl. Mech. 40, 769 (2008) (in Chinese).
12.
12. A. S. Phani, J. Woodhouse, and N. A. Fleck, J. Acoust. Soc. Am. 119, 1995 (2006).
http://dx.doi.org/10.1121/1.2179748
13.
13. S. Gonella and M. Ruzzene, J. Sound Vib. 312, 125 (2008).
http://dx.doi.org/10.1016/j.jsv.2007.10.033
14.
14. Y. Liu, J. Y. Su, Y. L. Xu, and X. C. Zhang, Ultrasonics 49, 276 (2009).
http://dx.doi.org/10.1016/j.ultras.2008.09.008
15.
15. B. Merheb, P. A. Deymier, M. Jain, M. Aloshyna-Lesuffleur, S. Mohanty, A. Berker, and R. W. Greger, J. Appl. Phys. 104, 064913 (2008).
http://dx.doi.org/10.1063/1.2980330
16.
16. S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt, and A. Adibi, App. Phys. Lett. 92, 221905 (2008).
http://dx.doi.org/10.1063/1.2939097
17.
17. Y. M. Soliman, M. F. Su, Z. C. Leseman, C. M. Reinke, I. EI-Kady, and R. H. Olsson III, Appl. Phys. Lett. 97, 081907 (2010).
http://dx.doi.org/10.1063/1.3476354
18.
18. T. Kim and C. Seo, IEEE Microwave Guided Wave Lett. 10, 13 (2000).
http://dx.doi.org/10.1109/75.842072
19.
19. Y. Q. Fu, N. C. Yuan, and G. H. Zhang, Microwave Opt. Technol. Lett. 32, 136 (2002).
http://dx.doi.org/10.1002/mop.10112
20.
20. A. H. Safavi-Naeini and O. Painter, Opt. Express 18, 14926 (2010).
http://dx.doi.org/10.1364/OE.18.014926
21.
21. J. B. Li, Y. S. Wang, and Ch. Zhang, in Proceedings of the 2008 IEEE International Ultrasonics Symposium (IEEE, New York, 2008), Vol. 1468.
22.
22. M. Kafesaki and E. N. Economou, Phys. Rev. B 60, 17 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.11993
23.
23. X. X. Su and Y. S. Wang, Physica B 405, 3645 (2010).
http://dx.doi.org/10.1016/j.physb.2010.05.058
24.
24. Z. Z. Yan and Y. S. Wang, Phys. Rev. B 74, 224303 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.224303
25.
25. W. Weaver, S. Timoshenko, and D. H. Young, Vibration Problems in Engineering (Wiley, New York, 1990).
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/11/10.1063/1.3665205
Loading
/content/aip/journal/jap/110/11/10.1063/1.3665205
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/110/11/10.1063/1.3665205
2011-12-09
2015-07-07

Abstract

In this paper we study the bandgap properties of two-dimensional phononic crystals with cross-like holes using the finite element method. The influence of the geometry parameters of the holes on the bandgaps is discussed. In contrast to a system of square holes, which does not exhibits bandgaps if the symmetry of the holes is the same as that of the lattice, systems of cross-like holes show large bandgaps at lower frequencies. The bandgaps are significantly dependent upon the geometry (including the size, shape, and rotation) of the cross-like holes. The vibration modes of the bandgap edges are computed and analyzed in order to clarify the mechanism of the generation of the lowest bandgap. It is found that the generation of the lowest bangdap is a result of the local resonance of the periodically arranged lumps connected with narrow connectors. Spring-mass models are developed in order to predict the frequencies of the lower bandgap edges. The study in this paper is relevant to the optimal design of the bandgaps in light porous materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/110/11/1.3665205.html;jsessionid=49krmrfnhntc.x-aip-live-06?itemId=/content/aip/journal/jap/110/11/10.1063/1.3665205&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Large bandgaps of two-dimensional phononic crystals with cross-like holes
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/11/10.1063/1.3665205
10.1063/1.3665205
SEARCH_EXPAND_ITEM