1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electric field compensation and sensing with a single ion in a planar trap
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/110/11/10.1063/1.3665647
1.
1. R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, Nat. Phys. 5(8), 551 (2009).
http://dx.doi.org/10.1038/nphys1311
2.
2. M. J. Biercuk, H. Uys, J. W. Britton, A. P. VanDevender, and J. J. Bollinger, Nat. Nanotechnol. 5(9), 646 (2010).
http://dx.doi.org/10.1038/nnano.2010.165
3.
3. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998).
4.
4. J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, Science 325, 1227 (2009).
http://dx.doi.org/10.1126/science.1177077
5.
5. P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, Science, 309(5735), 749 (2005).
http://dx.doi.org/10.1126/science.1114375
6.
6. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Science 319(5871), 1808 (2008).
http://dx.doi.org/10.1126/science.1154622
7.
7. D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417(6890), 709 (2002).
http://dx.doi.org/10.1038/nature00784
8.
8. J. Chiaverini, R. B. Blakestad, J. Britton, J. D. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, Quantum Inf. Comput. 5, 419 (2005).
9.
9. S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, Phys. Rev. Lett. 96, 253003 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.253003
10.
10. J. Britton, D. Leibfried, J. Beall, R. B. Blakestad, J. J. Bollinger, J. Chiaverini, R. J. Epstein, J. D. Jost, D. Kielpinski, C. Langer, R. Ozeri, R. Reichle, S. Seidelin, N. Shiga, J. H. Wesenberg, and D. J. Wineland, e-print arXiv:quant-ph/0605170 (2006).
11.
11. C. E. Pearson, D. R. Leibrandt, W. S. Bakr, W. J. Mallard, K. R. Brown, and I. L. Chuang, Phys. Rev. A 73, 32307 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.032307
12.
12. J. Labaziewicz, Y. Ge, P. Antohi, D. Leibrandt, K. R. Brown, and I. L. Chuang, Phys. Rev. Lett. 100, 13001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.013001
13.
13. D. R. Leibrandt, J. Labaziewicz, R. J. Clark, I. L. Chuang, R. Epstein, C. Ospelkaus, J. Wesenberg, J. Bollinger, D. Leibfried, D. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R. E. Slusher, Quantum Inf. Comput. 9(11), 0901 (2009).
14.
14. D. T. C. Allcock, J. A. Sherman, D. N. Stacey, A. H. Burrell, M. J. Curtis, G. Imreh, N. M. Linke, D. J. Szwer, S. C. Webster, A. M. Steane, and D. M. Lucas, New J. Phys. 12(5), 053026 (2010).
http://dx.doi.org/10.1088/1367-2630/12/5/053026
15.
15. J. M. Amini, H. Uys, J. H. Wesenberg, S. Seidelin, J. Britton, J. J. Bollinger, D. Leibfried, C. Ospelkaus, A. P. VanDevender, and D. J. Wineland, New J. Phys. 12(3), 033031 (2010).
http://dx.doi.org/10.1088/1367-2630/12/3/033031
16.
16. L. Tian, P. Rabl, R. Blatt, and P. Zoller, Phys. Rev. Lett. 92(24), 247902 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.247902
17.
17. N. Daniilidis, T. Lee, R. Clark, S. Narayanan, and H. Häffner, J. Phys. B 42, 154012 (2009).
http://dx.doi.org/10.1088/0953-4075/42/15/154012
18.
18. Q. A. Turchette, Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland, Phys. Rev. A 61, 63418 (2000).
http://dx.doi.org/10.1103/PhysRevA.61.063418
19.
19. L. Deslauriers, S. Olmschenk, D. Stick, W. K. Hensinger, J. Sterk, and C. Monroe, Phys. Rev. Lett. 97(10), 103007 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.103007
20.
20. N. Daniilidis, S. Narayanan, S. Möller, R. Clark, T. Lee, P. Leek, A. Wallraff, St. Schulz, F. Schmidt-Kaler, and H. Häffner, New J. Phys. 13, 013032 (2011).
http://dx.doi.org/10.1088/1367-2630/13/1/013032
21.
21. M. Harlander, M. Brownnutt, W. Hänsel, and R. Blatt, New J. Phys. 12(9), 093035 (2010).
http://dx.doi.org/10.1088/1367-2630/12/9/093035
22.
22. R. B. Blakestad, C. Ospelkaus, A. P. VanDevender, J. M. Amini, J. Britton, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett. 102(15), 153002 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.153002
23.
23. S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, Fortschr. Phys. 54, 648 (2006).
http://dx.doi.org/10.1002/prop.v54:8/10
24.
24. F. Schmidt-Kaler, S. Schulz, U. Poschinger, and F. Ziesel, New J. Phys. 10, 045007 (2008).
http://dx.doi.org/10.1088/1367-2630/10/4/045007
25.
25. D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, J. Appl. Phys. 83(10), 5025 (1998).
http://dx.doi.org/10.1063/1.367318
26.
26. T. Rosenband, Technical report, private communication (2009).
27.
27. Y. Ibaraki, U. Tanaka, S. Urabe, Appl Phys B 105, 219 (2011).
http://dx.doi.org/10.1007/s00340-011-4463-x
28.
28. D. J. Wineland, C. Monroe, W. M. Itano, B. E. King, D. Leibfried, D. M. Meekhof, C. Myatt, and C. Wood, Fortschr. Phys. 46(4-5), 363 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<>1.0.CO;2-6
29.
29. N. Akerman, S. Kotler, Y. Glickman, Y. Dallal, A. Keselman, and R. Ozeri, Phys. Rev. A 82(6), 3 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.061402
30.
30. See www.electronoptics.com for more information about CPO.
31.
31. B. Bosco and M. T. Sacchi, Ann. Phys. 12, (1981).
http://dx.doi.org/10.1016/0003-4916(81)90238-4
32.
32. T. B. Smith, Inverse Probl. 1(2), 173 (1985).
http://dx.doi.org/10.1088/0266-5611/1/2/006
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/11/10.1063/1.3665647
Loading
/content/aip/journal/jap/110/11/10.1063/1.3665647
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/110/11/10.1063/1.3665647
2011-12-12
2014-09-16

Abstract

We use a single ion as a movable electric field sensor with accuracies on the order of a few V/m. For this, we compensate undesired static electric fields in a planar radio frequency trap and characterize the static field and its curvature over an extended region along the trap axis. We observe a strong buildup of stray charges around the loading region on the trap resulting in an electric field of up to 1.3 kV/m at the ion position. We also find that the profile of the stray field remains constant over a time span of a few months.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/110/11/1.3665647.html;jsessionid=ctkj1cli4qoi4.x-aip-live-03?itemId=/content/aip/journal/jap/110/11/10.1063/1.3665647&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electric field compensation and sensing with a single ion in a planar trap
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/11/10.1063/1.3665647
10.1063/1.3665647
SEARCH_EXPAND_ITEM