1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach
Rent:
Rent this article for
USD
10.1063/1.3671067
/content/aip/journal/jap/110/12/10.1063/1.3671067
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/12/10.1063/1.3671067

Figures

Image of FIG. 1.
FIG. 1.

(a) Heat flow for layers in series. Here, T 1 and T 2 denote the Laplace transformation of ambient temperatures on both sides of the composite; and are the thermal input and outflow of material i(j). Here, is based on the continuity of the interface heat flux between adjacent layers. (b) Heat flow for layers in parallel, where denote input heat flux carried by two thermal dissipation modes, and is the total heat flux into material, i.

Image of FIG. 2.
FIG. 2.

(a) Illustration of the series and parallel heat pathways for an OLED used in setting up the matrix product. The matrix product describing the thermal flux to the left is , and is composed of transport in air, glass substrate, and ITO anode in sequence, and is the product for thermal transport to the right, composed of the organic layer, metal cathode, air gap, encapsulation, and air in sequence. (b) The construction of , where and are the source and ambient temperatures, respectively, and are the heat fluxes dissipated through the left and right surfaces, and is the total thermal power flow. The conduction matrices for the organic, metal cathode, and air layers are multiplied in sequence while radiation is incorporated as a parallel pathway.

Image of FIG. 3.
FIG. 3.

(Color) (a) Schematic structure of small-area Ir(ppy)3 devices: glass (1 mm)/ITO (120 nm)/organic layers (105 nm)/Al cathode (100 nm). (b) Patterning of the ITO and Al anode and cathode stripes, each 1 mm wide. (c) Thermal images of the Ir(ppy)3 device under a fixed voltage of 10 V (corresponding to a current density of 1 A/cm2) after 10, 20, and 30 s operation following the onset of the voltage ramp. The dashed square indicates the device location.

Image of FIG. 4.
FIG. 4.

(Color) (a) Schematic structure of large-area devices: glass (0.7 mm)/indium tin oxide (120 nm)/organic layers (120 nm)/Al cathode (100 nm)/air gap (30 μm)/glass encapsulation (0.7 mm). (b) Illustration of the patterns used for the ITO and Al anode and cathode contacts, both 5 cm wide. (c) Thermal images of the large-area green device under a fixed voltage of 7 V (or a current density of 3.4 mA/cm2) after 60, 120, 180, and 240 s operation following the onset of the voltage ramp. The dashed square indicates the device location.

Image of FIG. 5.
FIG. 5.

The external quantum (EQE) and power efficiencies (PE) vs the drive current density of large-area (a) green, and (b) red electrophosphorescent OLEDs (PHOLEDs).

Image of FIG. 6.
FIG. 6.

(a) Current density vs voltage (J-V), and (b) luminance vs current density (L-J) characteristics of large-area green (squares) and red (dots) PHOLEDs.

Image of FIG. 7.
FIG. 7.

Transient temperature response (open symbols) measured using infrared imaging at different voltages for large-area (a) green, and (b) red PHOLEDs following the onset of the voltage step. The results are compared with transmission matrix model calculations (solid lines). The corresponding drive currents and other operating parameters for these conditions are provided in Tables I and II, with the parameters used for the calculations provided in Table III.

Image of FIG. 8.
FIG. 8.

Calculated temperature gradient across the ITO and glass layers for heat fluxes of Q1 = 197 W/m2, Q2 = 270 W/m2, Q3 = 353 W/m2, and Q4 = 447 W/m2 generated in the PHOLED light emitting layer (EML). The surface temperatures at each heat flux are obtained from measurements using infrared imaging. The small thermal gradient suggests that the thermal measurements made at the glass surface are an accurate determination of the temperature of the EML.

Image of FIG. 9.
FIG. 9.

Transient temperature response (open symbols) measured using infrared imaging at different voltages for large-area (a) green, and (b) red PHOLEDs following the end of the drive voltage step at time, t = 0. The devices were operated at a fixed voltage until temperature equilibrium was reached. The results are compared with transmission matrix model calculations (solid lines). The corresponding drive currents and other operating parameters for these conditions are provided in Tables I and II, with the parameters used for the calculations provided in Table III.

Image of FIG. 10.
FIG. 10.

Calculated PHOLED temperature due to convective losses as a function of air conductivity at input heat fluxes of 100, 200, 500, and 1000 W/m2.

Image of FIG. 11.
FIG. 11.

Calculated PHOLED temperature (open dots) as a function of thermal input power for devices using glass, sapphire, and silicon substrates. The results are compared with the finite element analysis (solid dots). Where only matrix results are shown (open symbols), the differences with FEA calculations are negligible on the scale of the plot.

Image of FIG. 12.
FIG. 12.

Temporal response of the PHOLED temperature (solid dots) at various pulse widths of 1, 5, and 10 ms under a fixed, ultrahigh thermal input power of 106 W/m2. Linear fits are displayed as solid lines. The physical and thermal parameters are the same as for the large-area devices. Now, , whereas is used here compared to that of the large-area devices due to the short pulse duration.

Image of FIG. 13.
FIG. 13.

Heat transfer for the multilayer composite PHOLED is calculated using different polynomial expansion orders (n = 6, 7, and 8). Note the convergence of the solutions for n = 6 and n = 7, whereas the solution becomes unstable at n = 8.

Tables

Generic image for table
Table I.

Summary of efficiency and thermal parameters of the large-area green PHOLED.

Generic image for table
Table II.

Summary of efficiency and thermal parameters of the large-area red PHOLED.

Generic image for table
Table III.

Summary of the thermal parameters used in modeling.

Generic image for table
Table IV.

Roots of the truncated denominator polynomial.

Loading

Article metrics loading...

/content/aip/journal/jap/110/12/10.1063/1.3671067
2011-12-27
2014-04-18
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/12/10.1063/1.3671067
10.1063/1.3671067
SEARCH_EXPAND_ITEM